
1. Axiomatic Systems

You’re a military commander and your intelligence staff has intercepted some enemy
communications. They’ve determined that all of the messages the enemy sends are
strings in the set {+,−}∗. They’ve also gleaned that every message s that the enemy
sends satisfies the following properties:

1. Every prefix of s has at least as many + symbols as − symbols.

2. Every suffix of s has at least as many − symbols as + symbols.

As part of your attempt to decipher your enemy’s code, you decide it is worthwhile to
try sending messages in their code to them. You therefore need to construct messages
s, but you have to make sure that every message you can construct looks like an enemy
message (satisfies the properties above). Moreover, you feel it is necessary to be able to
construct every such message that the enemy could possible send.

Your task is to give a logical system, or a set of axioms and deduction rules, for messages
with the two properties above. Prove that every message that your logical system can
derive satisfies the two rules, and that every message that satisfies the two rules can be
derived by your logical system. In other words, give a logic for this concept and prove
its soundness and completeness.

Solution: Here is a logical system:

1. The empty string is a theorem (axiom).

2. If s is a theorem, then +s− is a theorem.

3. If s1 and s2 are both theorems and non-empty strings, then s1s2 is a theorem.

Soundness: We proceed by structural induction:

Base Case: The empty string trivially satisfies both properties because it has neither
prefices nor suffices and hence it is a truth.

Inductive Hypothesis: Any theorem of length ≤ n is a truth.

Inductive Step: Let s be a theorem of length n + 1. There are two ways we could
have derived s. The first is that s = +s′− for some string s′ of length exactly n− 1.
By our inductive hypothesis s′ is a truth, so that every prefix of s′ has at least as
many + symbols as − symbols and every suffix of s′ has at least as many − symbols
as + symbols. Every prefix of s, except for s itself, consists of a + followed by some
prefix of s′. Each of these prefices have at least as many + as minus symbols. An
analogous argument shows that, each suffix of s, excepting s itself, has at least as
many − symbols as + symbols. Since s′ is both a prefix and a suffix of s′ it must
be the case that it has the same number of + and − symbols. Therefore the string
s also has the same number of + and − symbols. Combined with the arguments
above, we see that s is a truth.



The second case is where s = s1s2. Since both s1 and s2 are non-empty strings they
both must have length ≤ n. We can apply the inductive hypothesis to both of them.
We will show that every prefix of s has at least as many + symbols as − symbols.
An analogous argument will establish the other property. A prefix of s is either a
prefix of s1 or the entirety of s1 concatenated with a prefix of s2. In the first case
the inductive hypothesis immediately reveals that this prefix satisfies the property
in question. In the second case, the inductive hypothesis coupled with the fact that
s1 must have the same number of + and − symbols establishes the property. The
same argument applied to suffices reveals that s is a truth.

Any theorem of length n + 1 must be derived either by prepending a + symbol and
appending − symbol, or by concatenating two strictly smaller strings. Thus our
argument covers every theorem of length n + 1. We have therefore established that
every theorem of length n+ is also a truth. By induction we have shown that our
system is sound.

Completeness: Again we proceed by structural induction.

Base Case: The only truth of length 0 is the empty string. It is the only string of
length 0.

Inductive Hypothesis: All truths of length ≤ n are theorems.

Inductive Step: Consider a truth s of length n + 1. Define a function fs(i) to be the
number of + symbols in the first i characters minus the number of − symbols in
the first i characters of s. Mathematically fs(i) = |{j ∈ {1, . . . , i}|sj = +}| − |{j ∈
{1, . . . , i}|sj = −}|. Since s is a truth, fs(i) ≥ 0∀i and fs(1) = 1 and fs(n + 1) = 0.
Either there is some i? ≤ n such that fs(i

?) = 0 or there fs is strictly positive for
i ≤ n.

In the first case, define the two substrings s′ = s1 . . . si? and s′′ = si?+1 . . . sn+1 so
that s = s′s′′. We will now argue that s′ and s′′ are truths. Since every prefix of s′

is also a prefix of s and since s is a truth, every prefix of s′ has at least as many +
as − symbols. Since fs(i

?) = 0 we see that the number of + symbols in s′ is equal
to the number of − symbols. For the suffix beginning at index j, the prefix ending
at index j − 1 has at least as many + symbols as − symbols, but the entire string
has the same number of + symbols as − symbols. This means that the suffix must
have at least as many − symbols as + symbols. This holds true for all j so that
s′ is a truth. An analogous argument establishes that s′′ is also a truth. Since s′

and s′′ are truths of length ≤ n, by the inductive hypothesis we have that both are
theorems. Consequently our logical system allows us to derive s = s′s′′ so that s is
also a theorem.

In the second case, we have that fs(i) ≥ 1 for 1 ≤ i ≤ n. Since fs(1) = 1 and
fs(n + 1) = 0 it is clear that the first character of s is a + symbol and the last
character of s is a − symbol. We can therefore write s = +s′−, and we are left
to show that s′ is a truth. First, notice that fs′(i) ≥ 0 for all i ≤ n − 1 since
fs′(i) = fs(i + 1) − 1. In other words, the prefix of s′ ending at the ith index has



exactly one fewer + symbol and the same number of − symbols as the analogous
prefix of s (it is the prefix of length i + 1 in s). Since every prefix of s of length ≤ n
has strictly more + symbols than − symbols, we see that every prefix of s′ has at
least as many + symbols as − symbols. Thus s′ satisfies the first property. Moreover,
since fs(n + 1) = 0, we see that fs′(n − 1) = 0, or that s′ has the same number of
+ and − symbols. The property about suffices follows from the same argument we
used in the previous step: namely, if fs′(i) ≥ 0 then the suffix of s′ starting at index
i + 1 must have at least as many − symbols as + symbols. Thus s′ is a truth and
by the inductive hypothesis it is also a theorem in our logical system. Consequently
s is also a theorem, since it can be derived by rule 2.

In summary, we showed that every truth of length n + 1 can either be derived by
concatenating two theorems of smaller length, or by prepending a + and appending
a − to a theorem of smaller length. We have therefore established that every truth
of length n + 1 is also a theorem. Consequently, our logical system is complete.

Notes: There are other possible solutions to this problem. For example the logical
system with the empty string as an axiom and the deduction rule: “If x and y are
truths then x +−y is a truth.” This logical system is both sound and complete.

2. Propositional Logic

(a) Let R,Q be propositional formulae. Describe a formula P that is a tautology iff R
and Q are equisatisfiable.

Solution: Define P by R↔ Q.

(b) Let P1, . . . , Pk be a collection of propositional formulae. We say that this collection
is consistent if there is a truth assignment which makes all Pi true. Write a formula
S that is a tautology iff this collection is not consistent.

Solution: Let S = ¬(P1 ∧ P2 ∧ · · · ∧ Pk).

3. First-order Logic

Express each of the following predicates and propositions in first-order logic, where the
universe is taken to be N, the relations are +(x, y, z), ∗(x, y, z), and = (x, y), where
+(x, y, z) is true iff x + y = z, and similarly for ∗, and there are no constants.

(a) n is the sum of two squares.

Solution: ∃a∃b∃c∃d(∗(a, a, c) ∧ ∗(b, b, d) ∧+(c, d, n)).

(b) n = 1



Solution: n = 1↔ ∗(n, n, n).

(c) m divides n (m | n).

Solution: m | n↔ ∃k(∗(m, k, n)).

(d) n is prime.

Solution: isPrime(n)↔ ∀k(k | n→ (k = 1∨ = (k, n)).

(e) n is a power of 2.

Solution:

isPow2↔ ∀k((isPrime(k) ∧ k | n)→ (∃m∃a(a = 1 ∧+(a, a,m)∧ = (k,m))).


