
15-251: Great Theoretical Ideas In Computer Science Fall 2012
Notes on Polynomials, Interpolation, and Codes (Draft)

October 9, 2012

You’ve probably all seen polynomials before: e.g., 3x2 − 5x + 17, or 2x − 3, or −x5 + 38x3 − 1, or
x, or even a constant 3. These are all polynomials over a single variable (here, x). The degree of a
polynomial is the highest exponent of x that appears: hence the degrees of the above polynomials
are 2, 1, 5, 1, 0 respectively.

In general, a polynomial over the variable x of degree at most d looks like:

P (x) = cdx
d + cd−1x

d−1 + ..+ c1x+ c0

Note that the sequence of d+ 1 coefficients 〈cd, cd−1, . . . , c0〉 completely describes P (x).

Hence, if the coefficients were all drawn from the field Fp ({0, 1, 2, . . . , p − 1} with addition and
multipication mod p), then we have exactly pd+1 possible different polynomials. This includes the
zero polynomial 0 = 0xd + 0xd−1 + ..+ 0x+ 0.

In this lecture, we will study some properties of polynomials, relate the ideas we use to stuff we’ve
seen in Concepts (namely, Chinese remaindering), and then use the properties of polynomials to
construct error correcting codes.

1 Operations on Polynomials

Before we study properties of polynomials, recall the following simple operations on polynomials:

• Given two polynomials P (x) and Q(x), we can add them to get another polynomial R(x) =
P (x) + Q(x). Note that the degree of R(x) is at most the maximum of the degrees of P and
Q. (Q: Why is it not equal to the maximum?)

(x2 + 2x− 1) + (3x3 + 7x) = 3x3 + x2 + 9x− 1

The same holds for the difference of two polynomials P (x) − Q(x), which is the same as
P (x) + (−Q(x)).

• Given two polynomials P (x) and Q(x), we can multiply them to get another polynomial
S(x) = P (x)×Q(x).

(x2 + 2x− 1)× (3x3 + 7x) = 3x5 + 4x3 + 6x4 + 14x2 − 7x

The degree of S(x) is equal to the sum of the degrees of P and Q.

• Note that P (x)/Q(x) may not be a polynomial.

• We can also evaluate polynomials. Given a polynomial P (x) and a value a, P (a) := cd · ad +
cd−1 · ad−1 + ..+ c1 · a+ c0. For example, if P (x) = 3x5 + 4x3 + 6x4 + 14x2 − 7x, then

P (2) = 3 · 25 + 4 · 23 + 6 · 24 + 14 · 22 − 7 · 2 = 266

1



Of course, the multiplication between the ci’s and a must be well-defined, as should the
meaning of ai for all i. E.g., if the ci’s and a are reals, this is immediate.

But also, if ci’s and a all belonged to Fp for prime p, evaluation would still be well-defined.
For instance, if we were working in Z17, then

P (2) = 266 (mod 17) = 11

• A root of a polynomial P (x) is a value r such that P (r) = 0. For example, P (x) above has
three real roots 0,−1 +

√
2,−1−

√
2, and two complex roots.

2 How Many Roots?

Let’s start with the following super-important theorem.

Theorem 1 (Few-Roots Theorem) Any non-zero polynomial of degree at most d over a field has at most
d distinct roots.1

This holds true, regardless of what field we are working over. When we are working over the reals
(i.e., the coefficients are reals, and we are allowed to plus in arbitrary reals for x), this theorem is a
corollary of the fundamental theorem of Algebra. But it holds even if we are working over some
other field (say Fp for prime p).

Let’s relate this to what we know. Consider polynomials of degree 1, also known as linear polyno-
mials. Say they have real coefficients, this gives a straight line when we plot it. Such a polynomial
has at most one root: it crosses the x-axis at most once. And in fact, any degree-1 polynomial
looks like c1x + c0, and hence setting x = −c0/c1 gives us a root. So, in fact, a polynomial of
degree exactly 1 has exactly one root.

What about degree 2, the quadratics? Things get a little more tricky now, as you probably remem-
ber from high school. E.g., the polynomial x2 + 1 has no real roots, but it has two complex roots.
However, you might remember that if it has one real root, then both roots are real. But anyways,
a quadratic crosses the x-axis at most twice. At most two roots.

And in general, the theorem says, any polynomial of degree at most d has at most d roots.

The proof of this theorem is not hard — it is done via induction. Here is a sketch of the details.
The case of d = 1 follows since ax + b has a single root −b/a when a 6= 0 and no roots when
a = 0, b 6= 0. Note that we already used the fact that the coefficients come from a field, because we
assumed we could divide by any nonzero a.

For d > 1, let P be a nonzero polynomial. Suppose α is a root of P (if P has no roots, we are
already done). Now let us divide P (x) by (x− α) to get:

P (x) = Q(x)(x− α) +R(x) ,

where degree(R) < 1. Therefore R(x) must be a constant polynomial, say R(x) = β. Now note
that

β = R(α) = P (α)−Q(α)(α− α) = 0

1In fact, the polynomial will have at most d roots counting multiplicities, but for most applications the bound on
number of distinct roots itself suffices.

2



implying R must be the zero polynomial. Hence P (x) = Q(x)(x − α). This implies that any root
of P other than α must be a root of Q. (Important: We are again using the fact that we are working
over a field here. Can you see why?) By inductionQ has at most d−1 distinct roots, which together
with α can give at most d distinct roots for P .

3 A New Representation for degree-d Polynomials

Let’s prove a simple corollary of the theorem. It says that if we plot two polynomials of degree at
most d, then they can intersect in at most d points—unless they are the same polynomial! Remember,
two distinct lines intersect at most once, two distinct quadratics intersect at most twice, etc. Same
principle.

Corollary 2 Given d + 1 pairs (a0, b0), (a1, b1), . . . , (ad, bd), there is at most one polynomial P (x) of
degree at most d, such that P (ai) = bi for all i = 0, 1, . . . , d.

Proof: First, note that if ai = aj , then bi better equal bj—else no polynomial can equal both bi and
bj when evaluated at ai = aj .

For a contradiction, suppose there are two distinct polynomials P (x) and Q(x) of degree at most
d such that for all i,

P (ai) = Q(ai) = bi.

Then consider the polynomialR(x) = P (x)−Q(x). It has degree at most d, since it is the difference
of two polynomials of degree at most d. Moreover,

R(ai) = P (ai)−Q(ai) = 0

for all the d+ 1 settings of i = 0, 1, . . . , d. Once again, R is a polynomial of degree at most d, with
d + 1 roots. By the contrapositive of Theorem 1, R(x) must be the zero polynomial. And hence
P (x) = Q(x), which gives us the contradiction. �

To paraphrase the theorem differently, given two (i.e., 1 + 1) points there is at most one linear (i.e.,
degree-1) polynomial that passes through them, given three (i.e., 2 + 1) points there is at most one
quadratic (i.e., degree-2) polynomial that passes through them, etc.

Can it be the case that for some d + 1 pairs (a0, b0), (a1, b1), . . . , (ad, bd), there is no polynomial of
degree at most d that passes through them? Well, clearly if ai = aj but bi 6= bj . But what if all the
ai’s are distinct?

Theorem 3 (Unique Reconstruction Theorem) Given d + 1 pairs (a0, b0), (a1, b1), . . . , (ad, bd) with
ai 6= aj for all i 6= j, there always exists a polynomial P (x) of degree at most d, such that P (ai) = bi for
all i = 0, 1, . . . , d.

We will prove this theorem soon, but before that let us note some implcations. Given d + 1 pairs
(a0, b0), (a1, b1), . . . , (ad, bd) with distinct a’s, this means there is a unique polynomial of degree at
most d that passes through these points. Exactly one.

In fact, given d + 1 numbers b0, b1, . . . , bd, there is a unique polynomial P (x) of degree at most d
such that P (i) = bi. (We’re just using the theorem with ai = i.) Earlier we saw how to represent
any polynomial of degree at most d by d + 1 numbers, the coefficients. Now we are saying that

3



we can represent the polynomial of degree at most d by a different sequence of d+ 1 numbers: its
values at 0, 1, . . . d.

Two different representations for the same thing, cool! Surely there must be a use for this new
representation. We will give at least two uses for this, but first let’s see the proof of Theorem 3. (If
you are impatient, you can skip over the proof, but do come back and read it—it is very elegant.)

4 The Proof of Theorem 3

OK, now the proof. We are given d + 1 pairs (ai, bi), and the a’s are all distinct. The proof will
actually give an algorithm to find this polynomial P (x) with degree at most d, and where P (ai) =
bi.

Let’s start easy: suppose all the d + 1 values bi’s were zero. Then P (x) has d + 1 roots, and now
Theorem 1 tells us that P (x) = 0, the zero polynomial!

OK, next step. Suppose b0 = 1, but all the d other bi’s are zero. Do we know a degree-d polynomial
which has roots at d places a1, a2, . . . , ad. Sure, we do—it is just

Q0(x) = (x− a1)(x− a2) · · · (x− ad).

So are we done? Not necessarily: Q0(a0) might not equal b0 = 1. But that is easy to fix! Just scale
the polynomial by 1/Q0(a0). I.e., what we wanted was

R0(x) = (x− a1)(x− a2) · · · (x− ad) ·
1

Q0(a0)

=
(x− a1)(x− a2) · · · (x− ad)

(a0 − a1)(a0 − a2) · · · (a0 − ad)
.

Again, R0(x) has degree d by construction, and satisfies what we wanted! (We’ll call R0(x) the 0th

“switch” polynomial.)

Next, what if b0 was not 1 but some other value. Easy again: just take b0 × R0(x). This has value
b0 × 1 at a0, and b0 × 0 = 0 at all other ai’s.

Similarly, one can define switch polynomialsRi(x) of degree d that haveRi(ai) = 1 andRi(aj) = 0
for all i 6= j. Indeed, this is

Ri(x) =
(x− a0) · · · (x− ai−1) · (x− ai−1) · · · (x− ad)

(ai − a0) · · · (ai − ai−1) · (ai − ai−1) · · · (ai − ad)
.

So the polynomial we wanted after all is just a linear combination of these switch polynomials:

P (x) = b0R0(x) + b1R1(x) + . . .+ bdRd(x)

Since it is a sum of degree-d polynomials, P (x) has degree at most d. And what is P (ai)? Since
Rj(ai) = 0 for all j 6= i, we get P (ai) = biRi(ai). Now Ri(ai) = 1, so this is bi. All done.

4.1 An example

4



Consider the tuples (5, 1), (6, 2), (7, 9): we want the unique degree-2 polynomial that passes through
these points. So first we find R0(x), which evaluates to 1 at x = 5, and has roots at 6 and 7. This is

R0(x) =
(x− 6)(x− 7)

(5− 6)(5− 7)
=

1

2
(x− 6)(x− 7)

Similarly

R1(x) =
(x− 5)(x− 7)

(6− 5)(6− 7)
= −(x− 5)(x− 7)

and

R2(x) =
(x− 5)(x− 6)

(7− 5)(7− 6)
=

1

2
(x− 5)(x− 6)

Hence, the polynomial we want is

P (x) = 1 ·R0(x) + 2 ·R1(x) + 9 ·R2(x) = 3x2 − 32x+ 86

Let’s check our answer:
P (5) = 1, P (6) = 2, P (7) = 9.

Note that constructing the polynomial P (x) takesO(d2) time. (Can you find the simplified version
in this time as well?)

This algorithm is called Lagrange interpolation, after Joseph-Louis Lagrange, or Giuseppe Lodovico La-
grangia, depending on whether you ask the French or the Italians. (He was born in Turin, and both
countries claim him for their own.) And to muddy things even further, much of his work was done at
Berlin. He later moved to Paris, where he survived the French revolution—though Lavoisier was sent to
the guillotine because he intervened on behalf of Lagrange. Among much other great research, he also
gave the first known proof of Wilson’s theorem, that n is a prime if and only if n|(n− 1)!+1—apparently
Wilson only conjectured Wilson’s theorem.

4.2 Remember that Chinese Remainder Theorem?

While you have Lagrange interpolation fresh in your mind, let’s recall Chinese remaindering and
relate the two. The ideas are almost exactly the same—so if you remember one, you can remember
both.

Theorem 4 (Chinese Remainder Theorem) Consider integers p0, p1, . . . , pd such that gcd(pi, pj) =
1, define M = p0p1 . . . pd. For any values ai ∈ Zpi , there is exactly one x ∈ ZM such that

x ≡ ai (mod pi).

Proof: Before we show there exists at least one such x, note that if there are two solutions x, y ∈ ZN ,
then z = x − y ≡ 0 (mod pi). Hence pi|z for all i, and since all the p’s are co-prime, we get that
N |z. This means z = 0 and hence x = y.

5



To construct a solution x, let us consider a similar proof strategy to the one for Lagrange interpo-
lation. Suppose we could we find numbers ri ∈ ZN such

ri = 1 (mod pi)

ri = 0 (mod pj) ∀j 6= i

Then we could just set
x := a0r0 + a1r1 + . . .+ adrd (mod N)

Note that x (mod pi) = airi (mod pi) (since rj (mod pi) for all j 6= i), which equals ai (since ri ≡ 1
(mod pi)).

Now to construct these ri’s. We’ll show the idea for r0. Again, let us first get the zeros in place —
let’s make sure r0 ≡ 0 (mod pi) for i > 0. This is easy: just take q = p1p2 . . . pd.

Can we use this value q as r0? Maybe not — possibly q (mod p0) = b 6= 1. So let’s fix that: multiply
q by the multiplicative inverse of b ∈ Zp0 (i.e., element b−1 such that b−1 · b ≡p0 1):

r0 = q × b−1 (mod p0) .

(Hang on — why does this multiplicative inverse of b exist? Well, from what we know from the
number theory lecture, such an inverse exists if gcd(b, p0) = 1. But hey, b = p1p2 . . . pd (mod p0),
so gcd(b, p0) = gcd(p1p2 . . . pd, p0) = 1. It’s all good.) �

This procedure for reconstructing the large integer in Chinese remaindering is very similar to
Lagrange interpolation, isn’t it?

An Example for CRT

Ler us see an example of this — we’ll use the Wikipedia example for CRT. We want a number x
that is 2 modulo 3, 3 modulo 4 and 1 modulo 5. So let’s first create those numbers ri as in the
previous section.

Start with q0 = p1 · p2 = 4 · 5 = 20 ≡ 2 (mod 3). So r0 = q0 · (2−1 mod 3) = q0 · 2 = 40.

Similarly, take q1 = p0 · p2 = 3 · 5 = 15 ≡ 3 (mod 4). So r1 = q1 · (3−1 mod 4) = q1 · 3 = 45.

And finally, q2 = p0 · p1 = 3 · 4 = 12 ≡ 2 (mod 5). So r2 = q2 · (2−1 mod 5) = q1 · 3 = 36.

Finally, x = 2r0 + 3r1 + 1r2 (mod 2 · 3 · 5) = 2 · 40 + 3 · 45 + 1 · 36 (mod 30) = 251 (mod 30) = 11.

Let’s check our answer: 11 is indeed 2 modulo 3, 3 modulo 4 and 1 modulo 5.

4.3 Another Proof of Theorem 3

Hey, Theorem 3’s so nice, we’ll prove it twice. (Sorry, bad one.) Here’s a proof that uses simple
linear algebra, and gives us another way to interpolate a degree d polynomial with any desired
values at d+ 1 distinct points.

6



Proof: Suppose the polynomial P (x) = cdx
d + cd−1x

d−1 + ..+ c1x+ c0, where the ci’s are currently
unknown. Since P (ai) = bi for all i, we get d+ 1 different equalities of the form

cda
d
0 + cd−1a

d−1
0 + ..+ c1a0 + c0 = b0

cda
d
1 + cd−1a

d−1
1 + ..+ c1a1 + c0 = b1

...

cda
d
i + cd−1a

d−1
i + ..+ c1ai + c0 = bi

...

cda
d
d + cd−1a

d−1
d + ..+ c1ad + c0 = bd

for i = 0, 1, . . . , d. Note that we want values of the unknowns ci’s that satisfy all these constraints:
we want to “solve for the c’s”.

This we can write more succinctly using linear algebra:
ad0 ad−10 · · · a0 1

ad1 ad−11 · · · a1 1
... · · ·
add ad−1d · · · ad 1




cd
cd−1

...
c0

 =


b0
b1
...
bd


Let’s denote this by A~c = ~b. Note that A is a (d + 1) × (d + 1) matrix. So if A was invertible, then
we could multiply by A−1 on both sides, and get ~c = A−1~b.

So, the first question: when is A invertible? This is precisely when the determinant of A is non-
zero. Here, A is so well-structured that it even has a name (it is called a Vandermonde matrix), and
we can write a closed form for its determinant:

det(A) =
∏
i<j

(ai − aj)

(Exercise: prove this!) And since all our a’s are distinct, this determinant is non-zero, and hence
the matrix A is invertible. In fact, this proves the theorem as stated, since we know that a solution
exists.

Of course, if you do want another algorithm to find the values for ci’s. We can do that in two
(closely related) ways:

• We can explicitly compute A−1, and then ~c = A−1~b. You remember how to compute matrix
inverses, right?

• Or use the extremely useful Cramer’s rule. If you want to solve A~c = ~b and A is invertible,
then the solution is

cd−i =
det(Ai[~b])

det(A)

where Ai[~b] is the matrix obtained by replacing the ith column of A by the column vector~b.

7



A note on efficiency: Note that both these approaches require computing determinants (either
explicitly for Cramer’s rule, or hidden in the computation of the inverse). The naı̈ve way to com-
pute the determinant of a m × m matrix takes m! time, but one can do it in time O(m3) using
Gaussian elimination. However, an algorithm based on this approach still takes more time than
the approach for the first proof. �

5 Application: Error Correcting Codes

Consider the situation: I want to send you a sequence of d + 1 numbers 〈cd, cd−1, . . . , c1, c0〉 over
a noisy channel. I can’t just send you these numbers in a message, because I know that whatever
message I send you, the channel will corrupt up to k of the numbers in that message. For the
current example, assume that the corruption is very simple: whenver a number is corrupted, it is
replaced by a ? 2. Hence, if I send the sequence

〈5, 19, 2, 3, 2〉

and the channel decides to corrupt the third and fourth numbers, you would get

〈5, 19, ?, ?, 2〉.

On the other hand, if I decided to delete the fourth and fifth elements, you would get

〈5, 19, 2, ?, ?〉.

Since the channel is “erasing” some of the entries and replacing them with ?’s, the codes we will
develop will be called erasure codes. The question then is: how can we send d+ 1 numbers so that
the receiver can get back these d + 1 numbers even if up to k numbers in the message are erased
(replaced by ?s)? (Assume that both you and the receiver know d and k.)

A simple case: if d = 0, then one number is sent. Since the channel can erase k numbers, the best
we can do is to repeat this single number k + 1 times, and send these k + 1 copies across. At least
one of these copies will survive, and the receiver will know the number.

This suggests a strategy: no matter how many numbers you want to send, repeat each number
k + 1 times. So to send the message 〈5, 19, 2, 3, 2〉with k = 2, you would send

〈5, 5, 5, 19, 19, 19, 2, 2, 2, 3, 3, 3, 2, 2, 2〉

This takes (d+ 1)(k + 1) numbers, approximately dk. Can we do better?

Indeed we can! We view our sequence 〈cd, cd−1, . . . , c1, c0〉 as the d+ 1 coefficients of a polynomial
of degree at most d, namely P (x) = cdx

d+cd−1x
d−1 + ..+c1x+c0. Now we evaluate P at some d+

k+1 points, say 0, 1, 2, . . . , d+k, and send these d+k+1 numbers (P (0), P (1), . . . , P (d+k)) across.
The receiver will get back at least d+ 1 of these numbers, which by Theorem 3 uniquely specifies
P (x). Moreover, the receiver can also reconstruct P (x) using, say, Langrange interpolation.

Here is an example: Suppose we want to send 〈5, 19, 2, 3, 2〉 with k = 2. Hence P (x) = 5x4 +
19x3 + 2x2 + 3x+ 2. Now we’ll evaluate P (x) at 0, 1, 2, . . . d+ k = 6. This gives

P (0) = 2, P (1) = 31, P (2) = 248, P (3) = 947, P (4) = 2542, P (5) = 5567, P (6) = 10676

2I am assuming that you are only sending numbers, and not ?s.

8



So we send across the “encoded message”:

〈2, 31, 248, 947, 2542, 5567, 10676〉

Now suppose the third and fifth entries get erased. the receiver gets:

〈2, 31, ?, 947, ?, 5567, 10676〉

So she wants to reconstruct a polynomial R(x) of degree at most 4 such that R(0) = 2, R(1) =
31, R(3) = 947, R(5) = 5567, R(6) = 10676. (That is, she wants to “decode” the message.) By
Langrange interpolation, we get that

R(x) =
1

45
(x− 1)(x− 3)(x− 5)(x− 6)− 31

40
x(x− 3)(x− 5)(x− 6) +

947

36
x(x− 1)(x− 5)(x− 6)

−5567

40
x(x− 1)(x− 3)(x− 6) +

5338

45
x(x− 1)(x− 3)(x− 5)

which simplifies to P (x) = 5x4 + 19x3 + 2x2 + 3x+ 2!

Note: The numbers get large, so you may want work modulo a prime. Since we want to send
numbers as large as 19, let’s work in Z23. Then you’d send the numbers modulo 23, which would
be

〈2, 8, 18, 4, 12, 1, 4〉

Now suppose you get
〈2, 8, ?, 4, ?, 1, 4〉

Interpolate to get

R(x) = 45−1(x− 1)(x− 3)(x− 5)(x− 6)− 5−1x(x− 3)(x− 5)(x− 6) + 9−1x(x− 1)(x− 5)(x− 6)

−40−1x(x− 1)(x− 3)(x− 6) + 2 · 45−1x(x− 1)(x− 3)(x− 5)

where the multiplicative inverses are modulo 23, of course. Simplifying, we get P (x) = 5x4 +
19x3 + 2x2 + 3x+ 2 again. (Of course, if you are working modulo a prime p, both the sender and
the receiver must know the prime p.)

5.1 Error Correction

One can imagine that the channel is more malicious: it decides to replace some k of the numbers not
by stars but by other numbers, so the same encoding/decoding strategy cannot be used! Indeed,
the receiver now has no clue which numbers were altered, and which ones were part of the original
message! In fact, even for the d = 0 case of a single number, we need to send 2k+1 numbers across,
so that the receiver knows that the majority number must be the correct one.

Conversely, if you evaluate P (x) at d + 2k + 1 locations and send those values across, even if the
channel alters k of those numbers, there is a unique polynomial that agrees with d+ k+ 1 of these
numbers (and this must of course be equal to the originally transmitted polynomialP (x)). We
leave the proof of this fact as an exercise (it is not hard and again just based on the fact that two
distinct degree d polynomials can’t agree on d+ 1 points).

Thus, in principle, one can determine P (x) even in the wake of k errors. The idea would be
throw out every subset of k values, and check if there is a degree d polynomial consistent with

9



the remaining values. If we ever find one, that must be the original polynomial P (x) (that is no
spurious polynomial can slip by this test); make sure you can argue why this is the case.

The trouble with this approach is that one must try all
(
d+2k+1

k

)
subsets which quickly becomes a

very large number as the number of errors increases (imagine, for example, k = d/2; the number
of subsets we need to try would grow exponentially in d).

Fortunately, there are better algorithms that can recover P (x) much more efficiently. The first
such algorithm was discovered by Peterson in 1960; this was probably one of the earliest non-
trivial polynomial time algorithms, and indeed predated the formulation of polynomial running
time as the metric for efficient algorithms. Later, Berlekamp and Massey gave improvements to
this algorithm, making it practical and leading to the widespread adoption of polynomial-based
coding in real world applications. Incidentally, this polynomial-based coding has a name — it is
called Reed-Solomon coding after its discoverers Reed and Solomon who proposed the code in
1960.

In the (optional) appendix, we describe an easier to describe algorithm, due to Welch and Berlekamp,
for performing Reed-Solomon error correction efficiently.

6 Half an Application: Polynomial Multiplication

This will only be half an application: we will mention the main idea behind this application, but
defer the actual details to 15-451.

We saw two representations of a degree-d polynomial P (x): the coefficient representation where
we write down the d+ 1 coefficients 〈cd, cd−1, . . . , c0〉, and the value representation where we write
down the value of P at some specific d+ 1 points, say (P (0), P (1), . . . , P (d)).

Let us consider the time it takes to perform various polynomial operations in these two represen-
tations:

• Addition: takes O(d) time in both representations.

• Multiplication: takes O(d2) time in the coefficient representation, but O(d) time in the value
representation. (We need to make sure that the product also has degree at most d, else we
will need more values.)

• Evaluation at a single point: can be done in time O(d) in the coefficient representation. (Ex-
ercise: How?)

In the value representation, one way to do evaluation would be to reconstruct P (x) using
Lagrange interpolation, and then evaluate P (x). But that would require O(d2) time.

So suppose we want to speed up polynomial multiplication. Here’s an approach: Given two
degree-d polynomials P,Q as a list of coefficients, we evaluate them at 2d + 1 points to convert
them to the value representation. Then we multiply them together using 2d+1 multiplies. Finally,
we convert this solution back to the coefficient represntation using Lagrange.

The problem is: the 2d + 1 evaluations, and also Lagrange interpolation, both these things take
Ω(d2) time.

The solution: don’t evaluate them at any old 2d+1 points. Evaluate them at the 2d+1 roots of unity.
(whoa!) This gives rise to the famous Fast Fourier Transform, which multiplies two polynomials in
time O(d log d). You’ll see more of this in 15-451.

10



Final note: why do we care about multiplying polynomials together, anyways? Well, the same
techniques also speed up integer multiplication as well. In this course we’ll see how to multiply
two n-bit numbers in timeO(n1.58). But the techniques based on the Fast Fourier Transform allows
us to multiply two n-bit integers in time O(n log n log logn).

A Appendix: Correcting errors using Reed-Solomon codes

Suppose a polynomial f ∈ Fp[X] of degree d is encoded as the sequence of values (f(α1), . . . , f(αn))
and transmitted where n = d+2k+1, but it is received as the noisy word y = (y1, . . . , yn) satisfying
yi 6= f(αi) for at most k values of i. The goal is to recover the polynomial f(X) from y.

Note that if we knew the location of the errors, i.e., the subset {i | yi 6= f(αi)}, then the decoding
is easy, as we can erase the erroneous and interpolate the polynomial on the rest of the locations.

To this end, let us define the so-called error locator polynomial (which is unknown to the decoder):

E(X)
def
=

∏
f(αi)6=yi

(X − αi) (1)

The degree of E(X) is ≤ k. Clearly E(X) has the property that for 1 ≤ i ≤ n,

E(αi)(yi − f(αi)) = 0

since either f(αi) = yi or E(αi) = 0 for every i. Thus the polynomial in two variables

T (X,Y ) = E(X)(Y − f(X)) (2)

satisfies T (αi, yi) = 0, ∀i. Defining the polynomial

N(X) = E(X)f(X) , (3)

which has degree at most d+ k, we see that T (X,Y ) is of the form

T (X,Y ) = E(X)Y −N(X) (4)

where degree(E) ≤ k and degree(N) ≤ d+k. We will use the existence of such a T to find a similar
bivariate polynomial from which we can find f(X).

Formally, the algorithms proceeds in two steps.

Step 1 : Find a non-zero polynomial Q(X,Y ) such that,

1. Q(X,Y ) = E1(X)Y −N1(X)

2. degree(E1) ≤ k and degree(N1) ≤ d+ k

3. Q(αi, yi) = 0, ∀i

Step 2 : Output N1(X)
E1(X) as f(X)

We first show that the first step of the algorithm will succeed in finding some non-zero Q.

Proposition 5 A non-zero solution Q to Step 1 exists.

11



Proof: Take E1 = E, N1 = N . �

We next show that, assuming at most k errors have occurred, the second step outputs the correct
polynomial f(X).

Proposition 6 Any solution (E1, N1) must satisfy N1
E1

= f .

Proof: Define the polynomial

R(X) = E1(X)f(X)−N1(X) (5)

Fact 1: degree(R) ≤ d + k. This follows immediately from the conditions imposed on the degree
of E1 and N1.
Fact 2: R has at least n − k = d + k + 1 roots. Indeed, for each locations i that is not in error, i.e.,
f(αi) = yi, we have R(αi) = Q(αi, yi) = 0.

Using the above two facts, we can conclude thatR is identically 0 (Why?). This means that f(X) =
N(X)/E1(X), as claimed. �

We now briefly comment on why the above algorithm admits an efficient implementation. Clearly
the second step is easy – it is just polynomial division. For the first step to findQ, note that it can be
solved by finding a non-zero solution to a homogeneous linear system with unknowns being the
coefficients of the polynomials N1, E1, and the linear constraints being the n equations Q(αi, yi) =
0. Since we guaranteed the existence of a nonzero solution, one can find some nonzero solution by
Gaussian elimination in O(n3) field operations. Faster methods with near-linear running time are
known for both the steps, and practically fast implementations of this algorithm are known and
used millions of times everyday for error-correction.

12


