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1 Notation

A graph is a set of vertices or nodes V , and a set of edges E, where each edge is a pair of
vertices. In an undirected graph an edge is just a set of two vertices {u, v} (order does not
matter), whereas in a directed graph an edge is an ordered pair (u, v) with the edge pointing
from u to v. In this course we will mostly deal with undirected graphs. The graph G is thus
the tuple (V, E).

Some jargon alert: You should get used to the phrase “Let G = (V, E) be a
graph. . .”. We use “nodes” and “vertex” completely interchangeably. Sometimes
we will even just say “Let G be a graph. . .”, and you should imagine G = (V, E)
in there.

As an example: the graph G = (V, E) with

V = {u, v, w, x, y, z}

and
E = {{u, x}, {u, v}, {v, w}, {x, y}, {x, z}, {y, z}, {u, z}}

is drawn below.

We also allow E to be a multiset of edges: the graph can have multiple edges connecting
the same two nodes. These are called parallel edges. We also allow an edge to be a multiset
of two copies of the same vertex {u, u}—such an edge is called a self-loop. But these are
exceptional cases. A graph is simple if it does not have any self-loops, and no parallel edges.

An important note: We assume our graphs are simple, unless otherwise stated.
So if you see a problem saying “Given a graph G, . . .”, imagine the word “simple”
in there.

The edge e = {u, v} is said to be incident to its two nodes u and v: these are also called its
endpoints. A vertex u is adjacent to v is there is an edge {u, v} “connecting them”.

The degree of a node v is the number of edges incident on v, and is written as deg(v). (One
exception: a self-loop {u, u} contributes 2 to the degree of u.) Since each edge is incident
on two nodes, it contributes to the degree of two nodes, and∑

v∈V

deg(v) = 2|E|.
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A path in G is a sequence of vertices (v1, v2, . . . , vk) such that each consecutive pair {vi, vi+1}
is an edge in G. The path is simple if all the vertices are distinct. A cycle is a path where
the start vertex v1 is the same as the end vertex vk, but all other vertices are distinct. For
example, in the graph above: x, y, z, x, u, v, u is a path, but is not simple, whereas x, y, z, u, v
is a simple path. And both x, y, z, x and x, y, z, u, x are cycles.

A graph G = (V, E) is connected if every pair of nodes in G has a path between them. If
the graph is not connected, each maximal connected piece is called a component.

2 Trees

A tree is a connected graph without any cycles (it is “acyclic”). The following two graphs
are trees:

whereas the following two are not:

But there are many equivalent definitions of trees:

Theorem 2.1 Let G be a graph on n nodes and e edges. The following statements are
equivalent:

1. G is a tree (connected, acyclic)

2. Every two nodes in G are connected by a unique path

3. G is connected and n = e + 1

4. G is acyclic and n = e + 1

Proofs like this often proceed by showing (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1), and in
this case we will do exactly this.

Proof: (1) =⇒ (2). Clearly, each pair u, v is connected by at least one path, since G is
connected. Now suppose u and v have two different paths P = (u = v0−v1−. . .−vk−vk+1 =
v) and Q = (u = w0 − w1 − . . . − wl − wl+1 = v). Let i be the smallest value such that
vi 6= wi; hence i ≥ 1. Let j be the smallest value j > i such that vp also lies on Q, say it is
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the same as wq. Then the paths wi−1 − wi − . . . − wq and vi−1 − vi − . . . − vp are disjoint
apart from the start and end, and form a cycle. This contradicts the acyclic property of G.

(2) =⇒ (3). By induction. The base case is when n = 2, then the unique path implies
a single edge, hence n = 2 = e + 1. Suppose the implication is true for all graphs with
< n nodes. Now suppose G has n nodes, let x, y be adjacent. Since there is a unique path
between x, y there cannot be another path connecting x, y. If we delete the edge x, y the
graph falls apart into two pieces G1 and G2. By induction n1 = e1 + 1 and n2 = e2 + 1, and
so n = n1 + n2 = e1 + e2 + 2 = e + 1 (since e = e1 + e2 + 1, to account for the edge {x, y}).
(3) =⇒ (4). By assumption, G is connected with n = e + 1. Suppose G has a cycle, with
k vertices. Then this cycle also has k edges. Let S be this cycle. Since G is connected,
there must be some vertex with an edge to S. Add this vertex to S along with this edge
connecting it to S. Repeat until all nodes in G have been added to S. Since we add one
edge for each vertex, we will end up with n vertices and n edges in S, which contradicts the
fact that G has n− 1 edges.

(4) =⇒ (1). Let G be acyclic and n = e + 1, and suppose G is not connected. Suppose
there are k components. Each component is acyclic and connected, so if it has ni nodes it
must have ni − 1 edges (from part (1) =⇒ (2)). Hence e =

∑
i ei =

∑
i ni − k. So k = 1,

which means the graph is connected. �

These multiple definitions allow us to prove many facts about trees. For example, the
following.

Fact 2.2 A leaf is a vertex in a tree with degree 1. Any tree has at least two leaves.

Proof: Suppose not. Then at least n−1 nodes have degree at least 2. Also, since the graph
is connected, the last node has degree at least one. So,

∑
v deg(v) ≥ 2(n− 1) + 1 = 2n− 1,

and hence |E| is at least n− 1/2. But it is an integer, so |E| ≥ dn− 1/2e = n. But this is
impossible for a tree. �

Exercise: Give an example of a tree with only two leaves.

Exercise: For a tree T , let S be the set of nodes with degree 1 or 2. Show that |S| ≥ n/2.

2.1 Counting Labeled Trees on n Nodes

In this section, we will count the number of labeled trees on n nodes, where the nodes are
numbered {1, 2, . . . , n}.

• There is only one tree on the two nodes {1, 2}: a single edge.

• On three nodes, each tree looks like a path with two edges: it comes down to choosing
which node is the middle — this can be done in 3 ways. Hence 3 = 31 trees.
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• On four nodes, either the tree looks like a path with three edges like this:

or like a “3-leaf star”, which has a vertex with three neighbors like this:

For the former, there are 4!/2 = 12 ways to label it, and for the latter, there are 4 ways
of choosing which node is the middle. Hence a total of 16 = 42 trees.

The following theorem proves the pattern behind these examples:

Theorem 2.3 (Cayley’s Formula) For each n ≥ 2, there are nn−2 distinct labeled trees
on n nodes.

There are many proofs of this fact: in fact, the first proof was due to a guy called Borchardt
in 1860, and even though Cayley’s paper clearly cites Borchardt, it was Cayley’s name that
got attached to the formula. The proof we give here is due to Heinz Prüfer.

Proof: The proof will show a bijection between the set of labeled trees on n vertices, and
the set {1, 2, . . . , n}n−2 consisting of sequences of length n−2 where each number is between
1 and n.

Given a tree T , you generate its Prüfer code thus: repeatedly find the leaf with the lowest
label, delete this leaf and the incident edge, and and output the label of its unique neighbor.
Stop when only two vertices remain.

Note that when n = 2, there is a single tree, and it is encoded by the empty sequence. For
n = 3, each tree is a path, and the encoding just outputs the name of the center vertex of
this path. Here is an example on a 7-node graph:
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This shows a way to get from a tree to a sequence of n−2 numbers from the set {1, 2, . . . , n}.
There are nn−2 of them. Note that the name of each non-leaf node in the tree T is output
at least once in this sequence, and the vertices not appearing in the sequence are precisely
the leaves of the original tree T .

Now, to go the other way from the sequence (a1, a2, . . . , an−2) to a tree, this suggests the
following algorithm. Start with all the numbers in {1, 2, . . . , n} that do not appear in the
sequence. These are the leaves of the tree. Call this set L. Now remove the least numbered
node l in L, and add an edge from this node l to the node numbered a1. Remove a1 from
the sequence, and l from the set L. If the number a1 does not appear as any other aj, add a1

to L. And repeat. If the sequence becomes empty, there are two nodes in L: connect them
by an edge.

Hence, for n = 7 and the sequence [3, 3, 5, 5, 4] we got above,

• We start off with the set of leaves L = {1, 2, 6, 7}.
• Now we add an edge (1, 3), L becomes {2, 6, 7} (since 1 is deleted) and the sequence becomes [3, 5, 5, 4]

(since we remove 3 from the front of the sequence).
• Next we add edge (2, 3), the sequence becomes [5, 5, 4], and 2 is deleted but 3 is added to L to get
{3, 6, 7}.

• Add edge (3, 5), sequence becomes [5, 4], L is {6, 7}.
• Add edge (6, 5), sequence becomes [4], L is now {5, 7}.
• Add edge (5, 4), sequence becomes [], L is now {4, 7}.
• Add the last edge (4, 7).

Note that the edges we created above are precisely the ones we deleted in going from T to the code, and in
the same order.

To prove this, we need an inductive argument formalizing precisely this, which shows that
we get a bijection. We’ll omit the proof for now: for this iteration of the course, you should
know how to move from a tree to its Prüfer code, and back. �

Exercise: If the Prüfer code for a tree consists of a single number repeated n times, prove
that the tree must be a star. (A star is a tree with a single node with degree n − 1, and all
other nodes having degree 1.)

Exercise: If the Prüfer code for a tree has no repeated numbers, then show that the tree must
be a path.

Exercise*: The number of labeled trees on n vertices such that vertex i has degree di (with∑
i di = 2n− 2)) is given by the multinomial:(

n− 2
d1 − 1 ; d2 − 1 ; . . . ; dn − 1

)

2.2 Spanning Trees

Given a graph G = (V, EG), a spanning tree T of G is a connected acyclic subgraph of G
with the same vertex set V . I.e., T = (V, ET ) for some subset of edges ET ⊆ EG, and is a
tree.

5



Note that if G is not itself connected, it has no spanning trees. Else it has at least one
spanning tree. To see this, just take the connected graph, and if dropping some edge from
it does not cause the graph to become disconnected, drop it and continue. What remains
must be a spanning tree.

Exercise: Let Kn denote the “complete graph” on n vertices labeled {1, 2, . . . , n}: for every
pair of distinct vertices, it has an edge connecting that pair. (Hence there are

(
n
2

)
edges in

Kn.) E.g., here are the graphs K3, K4, K5:

How many distinct spanning trees does Kn have?

3 Planar Graphs

A graph is planar if it can be drawn in the plane without any crossing edges. (Such a drawing
is called a planar drawing.) E.g., the graph K4 is planar, since it admits the following planar
(i.e., non-crossing) drawing:

Note that any such planar drawing splits the infinite 2-dimensional plane into disjoint areas,
and these will be called faces. E.g. the drawing above creates 4 faces. (Remember to count
the outside, infinite face!)

3.1 Euler’s Formula

Euler’s formula says that if a connected planar graph has n vertices, e edges and f faces,
then n− e + f = 2. In fact, we don’t even need the graph to be simple for this formula: it
could have parallel edges. Let’s check this on two graphs: for K3 we have n = 3 nodes, e = 3
edges, and f = 2 faces. And for K4, we have n = 4, e = 6 edges and f = 4 faces. Both of
which check out: perhaps Euler is correct after all. And indeed he is: here’s the proof.

Theorem 3.1 (Euler’s Formula) If a connected (arbitrary) planar graph has n vertices,
e edges and f faces, then

n− e + f = 2.

Proof: The proof is by induction. Let’s build up the graph by adding edges one at a time,
always preserving the Euler formula.

Start with a single edge and 2 vertices. Note that n = 2, f = 1, e = 1. (Check!) Add the
edges in some order so that what we’ve added so far is connected. There are two cases to
consider.
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• The edge connects two vertices already there in the graph. In this case we add a new
edge, and also split an existing face in two. Hence e++ and f++, so n−e+f is preserved,
and we’re OK.

• The edge connects the current graph to a new vertex. Now n++ (since we added a new
vertex) and e++. Moreover, since the new vertex is degree-1, it does not create a new
face, so again n− e + f is preserved.

Since we started off with n− e + f = 2 and maintained that over the course of the process,
we get that at the end. �

Given Euler’s formula, we get a number of cool results as simple corollaries:

Theorem 3.2 A (simple) planar graph on n nodes has at most 3n − 6 edges, as long as
n ≥ 3.

Proof: Let G be a simple planar graph with n nodes, e edges, and f faces, and let n ≥ 3.
Suppose G is not connected, then we can add in edges maintaining planarity until G is
connected: this only gives us more edges.

Also, suppose there is an edge that has the same face on both sides of it. (This means
deleting this edge will disconnect the graph into two components A and V \A.) Then since
n ≥ 3, at least one of these components has anoter vertex apart from the endpoints of e, and
hence there must be at least one edge we can add that maintains planarity. Adding this new
edge gives us another planar graph with even more edges, so it suffices to prove the theorem
for graphs where every edge has two different faces on either side of it.

Every face of G has at least three edges around it, since we have at least three vertices and G
is simple and connected. (A face having a single edge would be a self-loop, and a face having
two edges around it can only be made by parallel edges. And each edge lies on exactly two
faces, so 2e ≥ 3f . Applying this inequality to Euler’s formula gives

n− e + f = 2

⇒ 3n− 3e + 3f = 6

⇒ 3n− 3e + 2e ≥ 6

⇒ 3n− 6 ≥ e

And we’re done.

This theorem is very useful: it shows that the number of edges in a planar (simple) graph
can never be too many more than the number of vertices in it. Also note that while Euler’s
formula works even for multigraphs, this works only for simple graphs. �

Exercise: Suppose G is a connected simple planar graph that has no cycle of length 3, and
n ≥ 3. Modify the proof above to show that the number edges in G is at most 2n− 4.

Corollary 3.3 Any (simple) planar graph contains a vertex with degree at most 5.
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Proof: Let G be a simple planar graph with n nodes, e edges, and f faces. The average
degree of G is

∑
v deg(v)/n = 2e/n. By Theorem 3.2, e ≤ 3n − 6, so the average degree of

G is at most 2(3n − 6)/n = 6 − 12/n < 6. If every vertex in G had degree at least 6, then
the average degree of G would be at least 6. Therefore G must contain a vertex of degree at
most 5. �

3.2 Characterizing Planar Graphs

Given a graph G, a minor of G is a graph you can obtain by deleting some edges of G, and
then contracting some other edges. (If you contract an edge, you merge the two nodes that
are its endpoints.) E.g., the graph on the left is a minor of the graph on the right if you
delete the blue edge, and contract the edges incident to the red nodes.

You’ve already seen the graph K5 with n = 5 and e =
(
5
2

)
= 10.

Let’s introduce the graph K3,3. In this graph each of the top three vertices are connected to
all of the bottom vertices, giving n = 6 and e = 9.

Theorem 3.4 (Kuratowski’s Theorem) A graph is planar if and only if it does not con-
tain K5 or K3,3 as a minor.

The proof that if a graph is planar, then it must contain either K3,3 or K5, is the hard
direction of the proof. (We won’t prove it here.) But the other direction is simple: as the
following exercise shows, K3,3 and K5 are not planar, and hence neither is any graph that
contains one of these as a minor.

Exercise: Use Theorem 3.2 to show that K5 is not planar. Can you do the same for K3,3?
Show that K3,3 is not planar using a similar proof based on Euler’s formula.

3.3 Colorings in Planar Graphs

We often study colorings of graphs: these are maps that assign colors to the vertices of the
graph. We say a coloring is proper if no two vertices that are connected by an edge have
the same color. In other words, the coloring does not color the endpoints of any edge the
same. 1

1The study of edge-colorings of graphs is also an interesting topic: here, we assign colors to the edges,
such that no two edges incident to the same vertex have the same color. However, when we talk about graph
colorings, it’s usually vertex colorings.
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A graph G is k-colorable if there exists a proper coloring for G that uses at most k colors.
Planar graphs happen to be graphs which can be colored using very few colors.

Theorem 3.5 (The Six Color Theorem) Any planar graph is 6-colorable.

Proof: The proof is by induction. For the base case, the graph with a single vertex is clearly
1-colorable.

Now let G = (V, E) be a planar graph with n nodes. By Corollary 3.3, it has a vertex v with
degree at most 5. Remove v and all edges incident on it to get H. This is another planar
graph, and hence can be colored using at most 6 colors. Now add back v and the edges.
Since v had at most 5 neighbors, at most 5 colors are used by its neighbors. So we can color
v using the remaining (sixth) color. �

A similar proof can be used to show that any graph with maximum degree ∆ can be (∆+1)-
colored, regardless of whether it is planar or not.

But this is not the best we can do for planar graphs:

Theorem 3.6 (The Five Color Theorem) Any planar graph is 5-colorable.

Proof: Start with a planar embedding of G. Use Corollary 3.3 to find a vertex v with degree
at most 5. If v’s degree was 4, then we can inductively color the graph G−{v}, and use the
fifth color to color v. So suppose v has degree 5.

Now remove v and all its incident edges—in the planar map, this will create a region bounded
by the five neighbors of v. If all the

(
5
2

)
possible edges between these five neighbors exist, we

have found a K5 in the graph, which is not planar, and hence gives us a contradiction. So
there exist two neighbors u, w of v that are not connected by an edge.

Figure here

Create a new graph H by merging together u and w as shown in the figure. Note that H is
also planar! So inductively find a coloring for H, unmerge u and w—giving them the same
color is OK since they don’t have an edge between them. But you’ve used only 4 colors,
since u and w have the same color, so use the fifth color for v. This completes the induction.
�

And you can do even better!

Theorem 3.7 (The Four Color Theorem) Any planar graph is 4-colorable.

A proof of theorem had been claimed many times since 1852, but the first correct proof
was only given by Kenneth Appel and Wolfgang Haken in 1976. The proof was computer-
assisted, in that 1,936 special graphs had to be checked for a certain property. While recent
proofs have reduced the number of cases to be checked to about 600, and a proof using
an automated theorem prover has been given, no “simple” proofs are known. There are
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several good online articles on the subject that give a sense of the techniques used in these
computer-assisted proofs.

Can we do even better? Can all planar graphs be 3-colored? No!

Exercise: Give an example of a planar graph that requires 4 colors to be properly colored.

4 Adjacency Matrix and Lists

The adjacency matrix A for a graph G = (V, E) is defined as follows:

Aij =

{
0 if (i, j) 6∈ E,

1 if (i, j) ∈ E.

example here

Theorem 4.1 The number of paths of length k between i and j is given by (Ak)ij.

The proof is a simple induction; we omit it here.
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