
1 

PROOFS REVISITED: 

Zero-knowledge, 

Interactive,  

Spot-checkable 

Computational Lens on Proofs 

Computer Science has led to significant 
new (and counterintuitive) perspectives 
on the age old concept of “proofs” 

• Zero-knowledge proofs: Reveal nothing but 
truth of statement being proved! 

• Interactive proofs: Easy to verify proofs 
for problems not believed to be in NP  

• Probabilistically Checkable Proofs: Super 
easy to check by probing proof at just three 
random locations (Grader’s dream) 

Today’s lecture: A glimpse into some of 
these ideas revolving around 

interactive proofs and  

probabilistic verification. 

 

These are some of the most influential 
ideas in theoretical computer science 
in the last 25 years  

• Deep conceptual statements 

• Many applications (cryptography, 
approximate optimization) 

Traditional proofs: 
1)  Non-interactive 
2)  Can never prove false statements 
 

The power of “proofs” enhanced by allowing: 
1)  Interaction between  prover and verifier; 
2)  Allowing small probability that verifier accepts 
 proof of a false statement 
 

ZERO-KNOWLEDGE PROOFS: 
Proofs that reveal nothing beyond 

truth of statement being proved 

You 

Server 

(Verifier) 

Public:  
Prime p, g  Z*

p 
gx  mod p 

 
Password: x    

x 

Prove that you 
know x  

Can you convince the server  
that you know x  

without  revealing x  
(or any other useful info)? 
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Pick a 
random bit 

b. 

B=gr mod p 

If b=0: r 
If b=1: r+x 

Know x. 
Pick random 
r in [1..p-1] 

b=0: Accept if B=gr  
 b=1: Accept if AB= gx+r  

Verifier 
 

b=0: “Tell me r” 
b=1: “Tell me r+x mod p-1” 

 

A=gx mod p 
Completeness and soundness 

Completeness: If prover plays by the 
rules, then the verifier is convinced 
with probability 1. 

 

Soundness: If prover cheats, the verifier 
rejects with probability ½ in each 
iteration. 

Soundness 

If b=0: r’ 
If b=1: y 

b=0: Accept if B=gr’ 
 b=1: Accept if AB= gy  

Verifier 

Prover 

If prover cheats, i.e., y  x + r’ 
So either B  gr’ or AB  gy 

The verifier will reject with prob.  ½  

A = gx  mod p 

Pick a 
random bit 

b. 

B=gr mod p 

If b=0: r 
If b=1: r+x 

Know x. 
Pick random 
r in [1..p-1] 

b=0: Accept if B=gr  
 b=1: Accept if AB= gx+r  

Verifier 
 

b=0: “Tell me r” 
b=1: “Tell me r+x mod p-1” 

 

Repeat n independent 
times: 1/2n chance  
of  fooling the verifier 

A=gx mod p 

What does the verifier learn? 

(when prover is honest) 

If b=0, he sees gr for random r 

If b=1, he sees gx+r for random r, i.e., again 
gs for random s. 

 
Verifier never sees both gr and gx+r  

 

Verifier simply sees an independent random 
element of Zp

* in each iteration.  
– Not very useful, he could have generated these 

himself! 

Prover knows a 3 coloring 
Can he give a “Zero Knowledge” proof 

of this fact 
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3! = 6 ways to permute 

the color names 

 

Notice that for the secret coloring of 
graph, there are 6 colorings that can be 
obtained by permuting the 3 color 
names. 

Prover randomly chooses one of the 6 colorings 

obtainable form the secret coloring. 

Prover randomly chooses one of the 6 colorings 

obtainable form the secret coloring. 

Each node will have an associated “locked box.”The prover 
places the colors in the corresponding boxes. 

Verifier: Picks an edge at random and asks to open 

the boxes at both ends of the edge. 

Verifier: Picks an edge at random and asks to open 

the boxes at both ends of the edge. 

Verifier: Picks an edge at random and asks to open 

the boxes at both ends of the edge. 
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REPEAT USING AN 

INDEPENDENT, RANDOM 

CHOICE OF THE 6 

PERMUTATIONS OF COLOR 

NAMES 

Prover randomly chooses one of the 6 colorings 

obtainable form the secret coloring. 

Prover randomly chooses one of the 6 colorings 

obtainable form the secret coloring. 

Each node will have an associated “locked box.”The prover 
places the colors in the corresponding boxes. 

Verifier: Picks an edge at random and asks to open 

the boxes at both ends of the edge. 

Verifier: Picks an edge at random and asks to open 

the boxes at both ends of the edge. 

REPEAT USING AN 

INDEPENDENT, RANDOM 

CHOICE OF THE 6 

PERMUTATIONS OF COLOR 

NAMES 
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Prover randomly chooses one of the 6 colorings 

obtainable form the secret coloring. 

Prover randomly chooses of one the 6 coloring 

obtainable form the secret coloring. 

Each node will have an associated “locked box.”The prover 
places the colors in the corresponding boxes. 

Verifier: Picks an edge at random and asks to open 

the boxes at both ends of the edge. 

Verifier: Picks an edge at random and asks to open 

the boxes at both ends of the edge. 

Verifier repeats these 

independent challenges for  cm 

where m = # edges in the graph  

 

If all  challenges result in the 

revelation of two different colors, 

the verifier accepts. Otherwise, 

the verifier rejects. 

Verifier  

Completeness: If graph is 3-colorable and 
prover has a valid coloring in mind, he can 
play by the rules and the verifier will 
accept. 
 
Soundness: If graph is not 3-colorable, then 
for any coloring there will be an edge with 
the same color at each end, and Verifier has 
a 1/m chance  of catching the prover’s lie in 
each round. 



6 

Soundness 

Probability of fooling the Verifier for all 
cm challenges  = (1 - 1/m)cm    < (1/e)c 

Taking c=100, this is negligible 

Zero-Knowledge  
(when prover plays by the rules) 

In each iteration, Verifier sees colors of two  
adjacent vertices (based on an independent  
scramble of the color names): 

• I.e., one of  (1,2),(2,3),(3,1), (2,1),(3,2),(1,3) 
  picked at random 
• Nothing he didn’t know/anticipate already!  

Locked Boxes? 

To make our arguments mathematical, we need to 
implement locked boxes with two properties: 

1. Hiding: Verifier shouldn’t be able to “open”  
     the locks on the boxes and learn the coloring 

(this would compromise zero-knowledge) 

2. Binding: Prover shouldn’t be able to change the 
values in the boxes after he is challenged with 
an edge (this would compromise soundness) 

Can be realized via  
“bit commitment schemes”  (details skipped) 

Binding property will hold for all prover strategies; 
Hiding property will hold for efficient verifiers. 

ANY THEOREM CAN BE PROVED 

IN A ZERO KNOWLEDGE WAY! 

Any proof of length m can be expressed as 
the 3-coloring of a graph of size poly(m) 
(follows from NP-completeness of 3COLOR) 
 
You make a graph G such that everyone 
agrees that a 3-coloring of G is equivalent to 
a proof of the theorem. 
 
You prove that you know a 3-coloring 
revealing zero information about anything 
else. 

Interactive Proofs 

So membership in NP languages can be 
proved in a “zero-knowledge” way. 

 

Can we prove membership in languages 
beyond NP? (we’ll drop zero-knowledge 
requirement for rest of the lecture) 

 

 

Graph Isomorphism 

Two graphs G=(V,E) and H=(W,F) are isomorphic 
if there exists a bijection  : V  W such that 
 a,b  V, (a,b)  E if and only if ((a),(b))  F 

In such a case, we say H = G    (H is just G, relabeled) 

Define the language  
ISO = { (G,H) | G and H are isomorphic graphs} 

ISO = {(G,H) | G and H are isomorphic} 

ISO is not known to be in P. 

(A major open question) 

 

Is ISO  NP ? 

 
Sure, witness is just the bijection  
Verifier can check that H =  G 
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 ISO = {(G,H) | G and H are isomorphic} 
ISO  NP  
 
NON-ISO =  
{(G,H) | G and H are not isomorphic} 
 
We don’t know if NON-ISONP  
(This would be a great PhD)  
 
 Turns out one with interaction, one can “prove”  

that two graphs are not isomorphic  
(convincing verifier with very high confidence) 

Prover 

Verifier 

(G,H)  ISO 
 

Prove it! 

???   

Prover 

Verifier 

(G,H)  ISO 
 

 (M,G)ISO: s=0 
 (M,H)ISO: s=1 

 
b=s: Accept 

b≠s: Reject 

  

NON-ISO interactive protocol: 
1. Verifier picks random b  {0,1} and perm.  
 If b=0, he sends M= G, else he sends M = H 
2. Prover responds with a bit s  {0,1}  
3. Verifier accepts iff b = s. 
 
  
 

Completeness: If G and H are not isomorphic, 
M is isomorphic to exactly one of G,H, and the 
prover can figure out which graph was scrambled 
to produce M and make verifier always accept. 

Soundness: If G and H are isomorphic, the 
distribution of M is independent of b. So Prover 
can’t guess b with probability better than ½. Thus 
Verifier accepts with probability  ½ 

Prover 

(G,H)  ISO 
 

 (M,G)ISO: s=0 
 (M,H)ISO: s=1 

 
b=s: Accept 

b≠s: Reject 

  

Repeat n times to get failure prob ≤ 1/2n 

Verifier 

Prover any function P(x,c) = what to 

say next if c is conversation so far.  

Verifier is a poly-time function  

V(x,r,c) = what to say next if  c is 

conversation so far (r=verifier’s random coins) 

P<->V(x,r)  denotes one conversation. 
Total bits in conversation can’t exceed 
some poly(|x|). Verifier must 
accept/reject at end of conversation. 
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 polynomial time verifier V(x,r), |r|<poly(|x|); 
all V<->P(x,r) conversations are poly(|x|) 
bounded and accept/reject. 

 

   xL:  

       Prover P Prr[P(x)V(x,r) accepts] = 1 

   xL:  

      Prover P Prr[P(x)V(x,r) accepts]  1/2  

 

 

A language L belongs to IP iff 

 

 polynomial time verifier V(x,r) 

|r|<poly(|x|); all V<->P(x,r) conversations are 
poly(|x|) bounded and accept/reject. 

 

xL: Prover P Prr[P(x)V(x,r) accepts] = 1 

xL: Prover P Prr[P(x)V(x,r) accepts]  1/2   
  

 

 

NON-ISO belongs to IP  

 

What else is in IP? 

We have seen that NON-ISO has an interactive  
proof, even though we don’t know if it is in NP. 
 

What about problems we surely believe to not  
be in NP, such as complements of 3COLOR,  
3SAT, or other NP-complete problems? 

In particular, can one (interactively) prove that  
a 3SAT formula is NOT satisfiable? 
 

A more general problem: #SAT 

How many satisfying assignments 

does φ have? 

SAT = {φ | φ is a satisfiable CNF formula. } 

 

#SAT = {(φ,k) | φ has exactly k satisfying 
assignments} 

 

 

 

 

Inductive Arithmetization: From Boolean 

formulae to a polynomial over a finite field.   

Arith(T) = 1 

Arith(F) = 0 

Arith(not θ1) = 1-Arith(θ1) 

Arith(θ1 and θ2) = Arith(θ1) Arith(θ2)  note: 

     x2=x so all powers are o or 1 

Inductive invariant:  

θ and Arith(θ) agree on all 0/1 assignments.  

Also, degree(Arith(θ)) = O(size(θ)) 

Φ(x1, x2,..,xn) has exactly k 
assignments. 

First I choose a prime 
p>2n  and let us encode  

Φ(x1, x2,..,xn) as  
P= Arith(Φ) over Fp so 

that P and Φ are identical 
on all 2n 0-1 assignments.  

 
Prover 

I’ll now prove that 
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Let’s define some polynomials 

But what if prover sends bogus P1(x) ? 

To combat this, Verifier picks random r1  Fp, and 
challenges prover to “prove” the value of P1(r1) 

Key point: If prover sends polynomial Q1(x)  P1(x),  
then Q1(r1)  P1(r1) with prob.  1- O(size()/p) 

The power of polynomials 

Two n-variable formulae  and  can differ on 
just one out of 2n assignments. So can’t catch 

their difference by checking at a random assignment.  

Two low-degree polynomials P  Q must  
differ on significant fraction of the domain. 

This property was very useful for  
“error-correction” and is now handy again. 

Amazing reach of this simple fact about 
polynomials: a nonzero degree d polynomial 
has at most d roots over a field. 

Lies beget lies: If prover sends poly Q1(x)  P1(x),  
then Q1(r1)  P1(r1) with high probability. 

Lies beget more lies: If prover sends polynomial  
Q2(x)  P2(x),  then Q2(r2)  P2(r2) with high prob. 

Verifier rejects if any of its checks across 
the n rounds fails; otherwise he accepts. 

Completeness: If Φ(x1,x2,..,xn) has exactly k  

assignments, then a prover playing honestly  

by the rules will satisfy all checks made by the verifier, 

and the verifier will accept with certainty. 

 

  

Soundness Theorem: If number of satisfying 

assignments to Φ(x1,x2,..,xn) doesn’t equal k,  then 

the verifier accepts with probability  poly(n)/p << 1/2 

Proof idea: Let Qi(x) be poly. prover sends in round i 
Since # sat. assignments to Φ = P1(0) + P1(1)  k,  
prover must lie about P1(x) in round 1, sending Q1  P1. 
 (otherwise the check Q1(0)+Q1(1)=k will fail) 

Now P2(0)+P2(1)=P1(r1) (by defn) & P1(r1)  Q1(r1) w.h.p. 
So prover is forced to lie in round 2, sending Q2  P2  
  (otherwise the check Q2(0)+Q2(1)=Q1(r1) will fail)  
 
  Continuing this argument, unless very lucky in an earlier round,  
     prover must send Qn(x)  Pn(x) in round n.  
   Verifier can compute Pn(rn) = P(r1,r2, …, rn) 
    (as he knows P) & will find Pn(rn)  Qn(rn) w.h.p. 
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Probability of accepting false claim 

For verifier to accept, prover must get lucky  
in some round. 
 
Let i be the earliest round where this happens, 
i.e., Pi(ri) = Qi(ri) even though Pi(x)  Qi(x) 

As Pi and Qi are degree poly(n) polys, this 
happens with probability  poly(n)/p 

The probability that prover gets lucky in  
some round is at most n times bigger,  
and thus also  poly(n)/p 

Summary 

One can prove that a 3SAT formula is 
not satisfiable via an interactive proof! 
(Note: verifier is efficient, prover has to work hard) 
 
 Via NP-completeness reductions, same 
Holds for claim that graph is not 3-colorable, 
not Hamiltonian, etc. 
 

In fact, IP=PSPACE.  
The power of interactive proofs extends to all 
problems solvable in polynomial space 

Probabilistically  

Checkable  

Proofs (PCP) 

Aka proofs for the lazy (busy?) grader 

Back to NP proofs 

Let L  NP, say 3COLOR. 

Traditional NP proof: A 3-coloring 
(O(n) bits for n-node graph). 
 
Verifier has to read full proof, 
And check that each edge is colored with two 
different colors.   

Can one write a proof that the verifier can 
 “spot check” at random locations and  
catch errors with good confidence?) 

Probabilistically Checkable Proofs 

Verifier V 
(randomized 
Polytime) 

proof  of length poly(n) 

Reads  O(1) random locations 
(independent of proof length) 

Completeness: 
 If G  3COLOR,  
 that V accepts  
with prob. 1 

Soundness: 
 If G  3COLOR,  
, V accepts with prob.  ½ 
 

PCP theorem 

In fact, verifier can get by with just 3 queries! 

PCP Theorem (1992) is one of the crowning  
achievements of CS theory (made the NYT) 
 

“There is a format of writing proofs of theorems 
such that the proof can be verified with good 
confidence by only probing 3 randomly chosen 
(from an appropriate distribution) locations.” 
 

Proof overhead (of strongest known forms):  
n poly(log n) if original witness length = n. 
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PCP theorem ingredients 

Proof is half-a-semester+ course. 
Blends together: 

• P/NP 
• expanding graphs 
• random walks 
• polynomials/finite fields 
• error-correcting codes 
• Fourier analysis 

Illustrates coolness of theoretical CS:  
Many interesting Math topics get mixed together.  
Can work on whatever you want. 
 

Study Guide 

Zero-knowledge proofs 
(intuitive argument 
for zero-knowledge) 
 

Interactive proofs beyond NP 
(soundness arguments) 

This is my last lecture this semester. 
        THANK  YOU !! 


