
1

PROOFS REVISITED:

Zero-knowledge,

Interactive,

Spot-checkable

Computational Lens on Proofs

Computer Science has led to significant
new (and counterintuitive) perspectives
on the age old concept of “proofs”

• Zero-knowledge proofs: Reveal nothing but
truth of statement being proved!

• Interactive proofs: Easy to verify proofs
for problems not believed to be in NP

• Probabilistically Checkable Proofs: Super
easy to check by probing proof at just three
random locations (Grader’s dream)

Today’s lecture: A glimpse into some of
these ideas revolving around

interactive proofs and

probabilistic verification.

These are some of the most influential
ideas in theoretical computer science
in the last 25 years

• Deep conceptual statements

• Many applications (cryptography,
approximate optimization)

Traditional proofs:
1) Non-interactive
2) Can never prove false statements

The power of “proofs” enhanced by allowing:
1) Interaction between prover and verifier;
2) Allowing small probability that verifier accepts
 proof of a false statement

ZERO-KNOWLEDGE PROOFS:
Proofs that reveal nothing beyond

truth of statement being proved

You

Server

(Verifier)

Public:
Prime p, g  Z*

p
gx mod p

Password: x

x

Prove that you
know x

Can you convince the server
that you know x

without revealing x
(or any other useful info)?

2

Pick a
random bit

b.

B=gr mod p

If b=0: r
If b=1: r+x

Know x.
Pick random
r in [1..p-1]

b=0: Accept if B=gr
 b=1: Accept if AB= gx+r

Verifier

b=0: “Tell me r”
b=1: “Tell me r+x mod p-1”

A=gx mod p
Completeness and soundness

Completeness: If prover plays by the
rules, then the verifier is convinced
with probability 1.

Soundness: If prover cheats, the verifier
rejects with probability ½ in each
iteration.

Soundness

If b=0: r’
If b=1: y

b=0: Accept if B=gr’
 b=1: Accept if AB= gy

Verifier

Prover

If prover cheats, i.e., y  x + r’
So either B  gr’ or AB  gy

The verifier will reject with prob.  ½

A = gx mod p

Pick a
random bit

b.

B=gr mod p

If b=0: r
If b=1: r+x

Know x.
Pick random
r in [1..p-1]

b=0: Accept if B=gr
 b=1: Accept if AB= gx+r

Verifier

b=0: “Tell me r”
b=1: “Tell me r+x mod p-1”

Repeat n independent
times: 1/2n chance
of fooling the verifier

A=gx mod p

What does the verifier learn?

(when prover is honest)

If b=0, he sees gr for random r

If b=1, he sees gx+r for random r, i.e., again
gs for random s.

Verifier never sees both gr and gx+r

Verifier simply sees an independent random
element of Zp

* in each iteration.
– Not very useful, he could have generated these

himself!

Prover knows a 3 coloring
Can he give a “Zero Knowledge” proof

of this fact

3

3! = 6 ways to permute

the color names

Notice that for the secret coloring of
graph, there are 6 colorings that can be
obtained by permuting the 3 color
names.

Prover randomly chooses one of the 6 colorings

obtainable form the secret coloring.

Prover randomly chooses one of the 6 colorings

obtainable form the secret coloring.

Each node will have an associated “locked box.”The prover
places the colors in the corresponding boxes.

Verifier: Picks an edge at random and asks to open

the boxes at both ends of the edge.

Verifier: Picks an edge at random and asks to open

the boxes at both ends of the edge.

Verifier: Picks an edge at random and asks to open

the boxes at both ends of the edge.

4

REPEAT USING AN

INDEPENDENT, RANDOM

CHOICE OF THE 6

PERMUTATIONS OF COLOR

NAMES

Prover randomly chooses one of the 6 colorings

obtainable form the secret coloring.

Prover randomly chooses one of the 6 colorings

obtainable form the secret coloring.

Each node will have an associated “locked box.”The prover
places the colors in the corresponding boxes.

Verifier: Picks an edge at random and asks to open

the boxes at both ends of the edge.

Verifier: Picks an edge at random and asks to open

the boxes at both ends of the edge.

REPEAT USING AN

INDEPENDENT, RANDOM

CHOICE OF THE 6

PERMUTATIONS OF COLOR

NAMES

5

Prover randomly chooses one of the 6 colorings

obtainable form the secret coloring.

Prover randomly chooses of one the 6 coloring

obtainable form the secret coloring.

Each node will have an associated “locked box.”The prover
places the colors in the corresponding boxes.

Verifier: Picks an edge at random and asks to open

the boxes at both ends of the edge.

Verifier: Picks an edge at random and asks to open

the boxes at both ends of the edge.

Verifier repeats these

independent challenges for cm

where m = # edges in the graph

If all challenges result in the

revelation of two different colors,

the verifier accepts. Otherwise,

the verifier rejects.

Verifier

Completeness: If graph is 3-colorable and
prover has a valid coloring in mind, he can
play by the rules and the verifier will
accept.

Soundness: If graph is not 3-colorable, then
for any coloring there will be an edge with
the same color at each end, and Verifier has
a 1/m chance of catching the prover’s lie in
each round.

6

Soundness

Probability of fooling the Verifier for all
cm challenges = (1 - 1/m)cm < (1/e)c

Taking c=100, this is negligible

Zero-Knowledge
(when prover plays by the rules)

In each iteration, Verifier sees colors of two
adjacent vertices (based on an independent
scramble of the color names):

• I.e., one of (1,2),(2,3),(3,1), (2,1),(3,2),(1,3)
 picked at random
• Nothing he didn’t know/anticipate already!

Locked Boxes?

To make our arguments mathematical, we need to
implement locked boxes with two properties:

1. Hiding: Verifier shouldn’t be able to “open”
 the locks on the boxes and learn the coloring

(this would compromise zero-knowledge)

2. Binding: Prover shouldn’t be able to change the
values in the boxes after he is challenged with
an edge (this would compromise soundness)

Can be realized via
“bit commitment schemes” (details skipped)

Binding property will hold for all prover strategies;
Hiding property will hold for efficient verifiers.

ANY THEOREM CAN BE PROVED

IN A ZERO KNOWLEDGE WAY!

Any proof of length m can be expressed as
the 3-coloring of a graph of size poly(m)
(follows from NP-completeness of 3COLOR)

You make a graph G such that everyone
agrees that a 3-coloring of G is equivalent to
a proof of the theorem.

You prove that you know a 3-coloring
revealing zero information about anything
else.

Interactive Proofs

So membership in NP languages can be
proved in a “zero-knowledge” way.

Can we prove membership in languages
beyond NP? (we’ll drop zero-knowledge
requirement for rest of the lecture)

Graph Isomorphism

Two graphs G=(V,E) and H=(W,F) are isomorphic
if there exists a bijection  : V  W such that
 a,b  V, (a,b)  E if and only if ((a),(b))  F

In such a case, we say H = G  (H is just G, relabeled)

Define the language
ISO = { (G,H) | G and H are isomorphic graphs}

ISO = {(G,H) | G and H are isomorphic}

ISO is not known to be in P.

(A major open question)

Is ISO  NP ?

Sure, witness is just the bijection 
Verifier can check that H =  G

7

 ISO = {(G,H) | G and H are isomorphic}
ISO  NP

NON-ISO =
{(G,H) | G and H are not isomorphic}

We don’t know if NON-ISONP
(This would be a great PhD)

 Turns out one with interaction, one can “prove”

that two graphs are not isomorphic
(convincing verifier with very high confidence)

Prover

Verifier

(G,H)  ISO

Prove it!

???

Prover

Verifier

(G,H)  ISO

 (M,G)ISO: s=0
 (M,H)ISO: s=1

b=s: Accept

b≠s: Reject

NON-ISO interactive protocol:
1. Verifier picks random b  {0,1} and perm. 
 If b=0, he sends M= G, else he sends M = H
2. Prover responds with a bit s  {0,1}
3. Verifier accepts iff b = s.

Completeness: If G and H are not isomorphic,
M is isomorphic to exactly one of G,H, and the
prover can figure out which graph was scrambled
to produce M and make verifier always accept.

Soundness: If G and H are isomorphic, the
distribution of M is independent of b. So Prover
can’t guess b with probability better than ½. Thus
Verifier accepts with probability  ½

Prover

(G,H)  ISO

 (M,G)ISO: s=0
 (M,H)ISO: s=1

b=s: Accept

b≠s: Reject

Repeat n times to get failure prob ≤ 1/2n

Verifier

Prover any function P(x,c) = what to

say next if c is conversation so far.

Verifier is a poly-time function

V(x,r,c) = what to say next if c is

conversation so far (r=verifier’s random coins)

P<->V(x,r) denotes one conversation.
Total bits in conversation can’t exceed
some poly(|x|). Verifier must
accept/reject at end of conversation.

8

 polynomial time verifier V(x,r), |r|<poly(|x|);
all V<->P(x,r) conversations are poly(|x|)
bounded and accept/reject.

 xL:

 Prover P Prr[P(x)V(x,r) accepts] = 1

 xL:

 Prover P Prr[P(x)V(x,r) accepts]  1/2

A language L belongs to IP iff

 polynomial time verifier V(x,r)

|r|<poly(|x|); all V<->P(x,r) conversations are
poly(|x|) bounded and accept/reject.

xL: Prover P Prr[P(x)V(x,r) accepts] = 1

xL: Prover P Prr[P(x)V(x,r) accepts]  1/2

NON-ISO belongs to IP

What else is in IP?

We have seen that NON-ISO has an interactive
proof, even though we don’t know if it is in NP.

What about problems we surely believe to not
be in NP, such as complements of 3COLOR,
3SAT, or other NP-complete problems?

In particular, can one (interactively) prove that
a 3SAT formula is NOT satisfiable?

A more general problem: #SAT

How many satisfying assignments

does φ have?

SAT = {φ | φ is a satisfiable CNF formula. }

#SAT = {(φ,k) | φ has exactly k satisfying
assignments}

Inductive Arithmetization: From Boolean

formulae to a polynomial over a finite field.

Arith(T) = 1

Arith(F) = 0

Arith(not θ1) = 1-Arith(θ1)

Arith(θ1 and θ2) = Arith(θ1) Arith(θ2)  note:

 x2=x so all powers are o or 1

Inductive invariant:

θ and Arith(θ) agree on all 0/1 assignments.

Also, degree(Arith(θ)) = O(size(θ))

Φ(x1, x2,..,xn) has exactly k
assignments.

First I choose a prime
p>2n and let us encode

Φ(x1, x2,..,xn) as
P= Arith(Φ) over Fp so

that P and Φ are identical
on all 2n 0-1 assignments.

Prover

I’ll now prove that

9

Let’s define some polynomials

But what if prover sends bogus P1(x) ?

To combat this, Verifier picks random r1  Fp, and
challenges prover to “prove” the value of P1(r1)

Key point: If prover sends polynomial Q1(x)  P1(x),
then Q1(r1)  P1(r1) with prob.  1- O(size()/p)

The power of polynomials

Two n-variable formulae  and  can differ on
just one out of 2n assignments. So can’t catch

their difference by checking at a random assignment.

Two low-degree polynomials P  Q must
differ on significant fraction of the domain.

This property was very useful for
“error-correction” and is now handy again.

Amazing reach of this simple fact about
polynomials: a nonzero degree d polynomial
has at most d roots over a field.

Lies beget lies: If prover sends poly Q1(x)  P1(x),
then Q1(r1)  P1(r1) with high probability.

Lies beget more lies: If prover sends polynomial
Q2(x)  P2(x), then Q2(r2)  P2(r2) with high prob.

Verifier rejects if any of its checks across
the n rounds fails; otherwise he accepts.

Completeness: If Φ(x1,x2,..,xn) has exactly k

assignments, then a prover playing honestly

by the rules will satisfy all checks made by the verifier,

and the verifier will accept with certainty.

Soundness Theorem: If number of satisfying

assignments to Φ(x1,x2,..,xn) doesn’t equal k, then

the verifier accepts with probability  poly(n)/p << 1/2

Proof idea: Let Qi(x) be poly. prover sends in round i
Since # sat. assignments to Φ = P1(0) + P1(1)  k,
prover must lie about P1(x) in round 1, sending Q1  P1.
 (otherwise the check Q1(0)+Q1(1)=k will fail)

Now P2(0)+P2(1)=P1(r1) (by defn) & P1(r1)  Q1(r1) w.h.p.
So prover is forced to lie in round 2, sending Q2  P2
 (otherwise the check Q2(0)+Q2(1)=Q1(r1) will fail)

 Continuing this argument, unless very lucky in an earlier round,
 prover must send Qn(x)  Pn(x) in round n.
 Verifier can compute Pn(rn) = P(r1,r2, …, rn)
 (as he knows P) & will find Pn(rn)  Qn(rn) w.h.p.

10

Probability of accepting false claim

For verifier to accept, prover must get lucky
in some round.

Let i be the earliest round where this happens,
i.e., Pi(ri) = Qi(ri) even though Pi(x)  Qi(x)

As Pi and Qi are degree poly(n) polys, this
happens with probability  poly(n)/p

The probability that prover gets lucky in
some round is at most n times bigger,
and thus also  poly(n)/p

Summary

One can prove that a 3SAT formula is
not satisfiable via an interactive proof!
(Note: verifier is efficient, prover has to work hard)

 Via NP-completeness reductions, same
Holds for claim that graph is not 3-colorable,
not Hamiltonian, etc.

In fact, IP=PSPACE.
The power of interactive proofs extends to all
problems solvable in polynomial space

Probabilistically

Checkable

Proofs (PCP)

Aka proofs for the lazy (busy?) grader

Back to NP proofs

Let L  NP, say 3COLOR.

Traditional NP proof: A 3-coloring
(O(n) bits for n-node graph).

Verifier has to read full proof,
And check that each edge is colored with two
different colors.

Can one write a proof that the verifier can
 “spot check” at random locations and
catch errors with good confidence?)

Probabilistically Checkable Proofs

Verifier V
(randomized
Polytime)

proof  of length poly(n)

Reads O(1) random locations
(independent of proof length)

Completeness:
 If G  3COLOR,
 that V accepts
with prob. 1

Soundness:
 If G  3COLOR,
, V accepts with prob.  ½

PCP theorem

In fact, verifier can get by with just 3 queries!

PCP Theorem (1992) is one of the crowning
achievements of CS theory (made the NYT)

“There is a format of writing proofs of theorems
such that the proof can be verified with good
confidence by only probing 3 randomly chosen
(from an appropriate distribution) locations.”

Proof overhead (of strongest known forms):
n poly(log n) if original witness length = n.

11

PCP theorem ingredients

Proof is half-a-semester+ course.
Blends together:

• P/NP
• expanding graphs
• random walks
• polynomials/finite fields
• error-correcting codes
• Fourier analysis

Illustrates coolness of theoretical CS:
Many interesting Math topics get mixed together.
Can work on whatever you want.

Study Guide

Zero-knowledge proofs
(intuitive argument
for zero-knowledge)

Interactive proofs beyond NP
(soundness arguments)

This is my last lecture this semester.
 THANK YOU !!

