15-251: Great Theoretical Ideas in Computer Science Fall 2014; Lecture 23 November 18, 2014

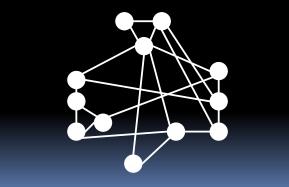
Efficient Reductions

Reductions

How to tell a mathematician from and an engineer:

- Put an empty kettle in the middle of the kitchen floor and tell your subjects to boil some water.
- The engineer will fill the kettle with water, put it on the stove, and turn the flame on. The mathematician will do the same thing.
- Next, put the kettle already filled with water on the stove, and ask the subjects to boil the water.
- The engineer will turn the flame on.
- The mathematician will empty the kettle and put it in the middle of the kitchen floor... thereby reducing the problem to one that has already been solved!

A Graph Named "Gadget"



K-Coloring

We define a k-coloring of a graph:

Each node gets colored with one color

At most k different colors are used

If two nodes have an edge between them they must have different colors

A graph is called k-colorable if and only if it has a k-coloring

A 2-CRAYOLA Question!

A 2-CRAYOLA Question!

Given a graph G, how can we decide if it is 2-colorable?

Answer: Enumerate all 2ⁿ possible colorings to look for a valid 2-color

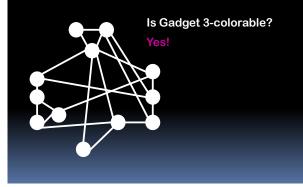
How can we **efficiently** decide if G is 2-colorable (aka bipartite)?

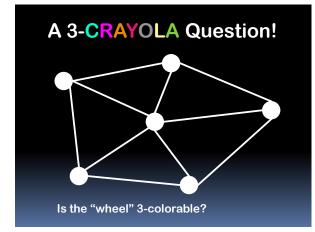
<u>Theorem</u>: G contains an odd cycle if and only if G is not 2-colorable

Efficient 2-coloring algorithm:

- To 2-color a connected graph G, pick an arbitrary node v, and color it white
- Color all v's neighbors black
- Color all their uncolored neighbors white, and so on
- If the algorithm terminates without a color conflict, output the 2-coloring
- Else, output graph is not 2-colorable (the conflict proves no 2-coloring is possible, and there is an odd cycle)

A 3-CRAYOLA Question!



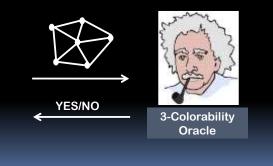


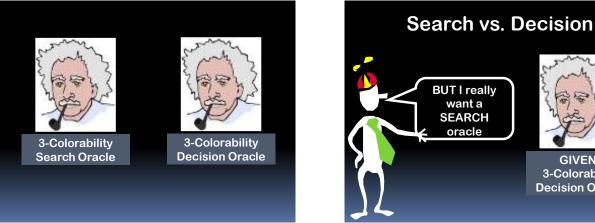
3-Coloring Is Decidable by Brute Force

Try out all 3ⁿ colorings until you determine if G has a 3-coloring

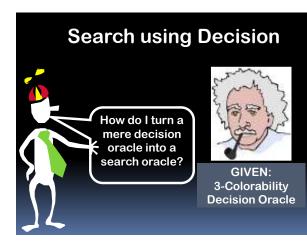
Best known algorithms take c^n time for some c > 1 (exponential runtime)

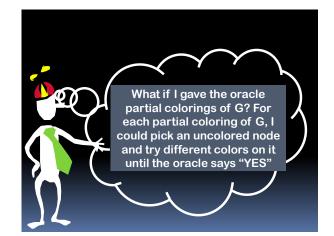
A 3-CRAYOLA Oracle

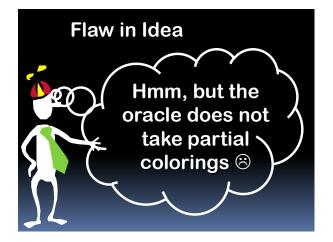


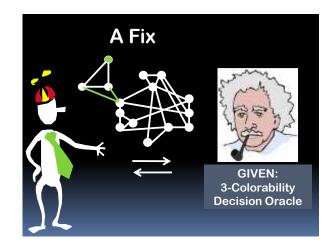


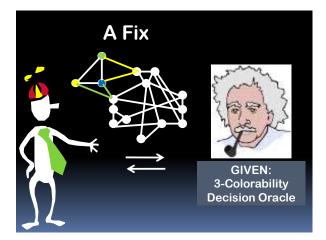
GIVEN: 3-Colorability **Decision Oracle**

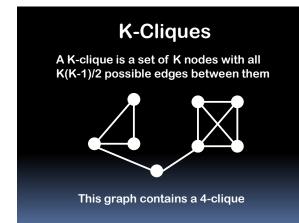


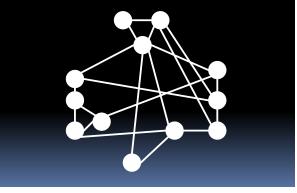








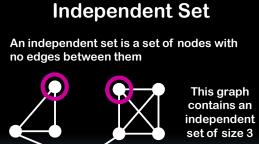




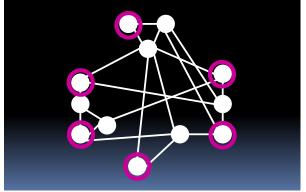
Given: (G, k) Question: Does G contain a k-clique?

BRUTE FORCE: Try out all n choose k possible locations for the k clique

No substantially faster algorithm known!



Independent set in gadget graph



Given: (G, k) Question: Does G contain an independent set of size k?

BRUTE FORCE: Try out all n choose k possible locations for the k independent set

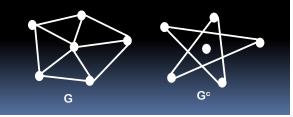
No substantially faster algorithm known!

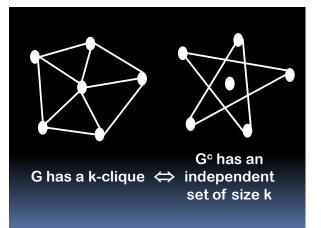
Clique / Independent Set

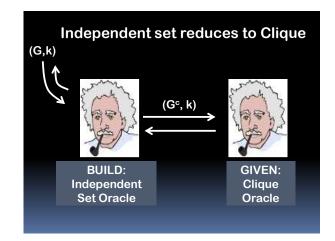
Two problems that are cosmetically different, but the same substance-wise

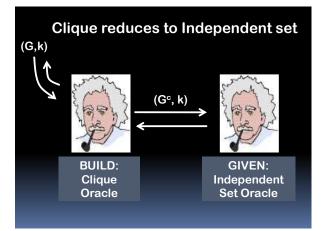
Complement of G

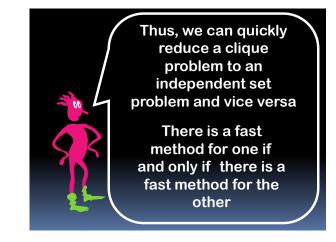
Given a graph G, let G^c, the complement of G, be the graph obtained by the rule that two nodes in G^c are connected if and only if the corresponding nodes of G are not <u>connected</u>

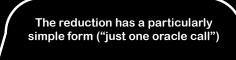












"Mapping reduction" (G,k) ∈ Clique iff (G^c,k) ∈ INDSET

Let A, $\mathbf{B} \subseteq \Sigma^*$

A is mapping reducible to B if there is an "efficient" map $f : \Sigma^* \to \Sigma^*$ such that $x \in A \Leftrightarrow f(x) \in B$ If A mapping reduces to B, then an efficient algorithm for B implies an efficient algorithm for A.

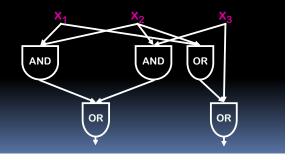
"A is no harder than B"

Contrapositively, if A doesn't admit an efficient algorithm, then B has no efficient algorithm either.

"B is no easier than A"

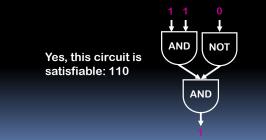
Combinatorial Circuits

AND, OR, NOT, 0, 1 gates wired together with no feedback allowed



Circuit-Satisfiability

Given a circuit with n-inputs and one output, is there a way to assign 0-1 values to the input wires so that the output value is 1 (true)?

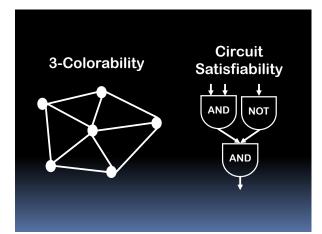


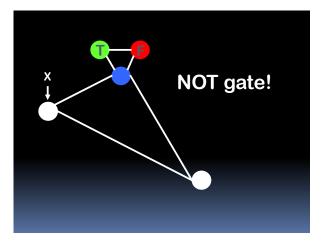
Circuit-Satisfiability

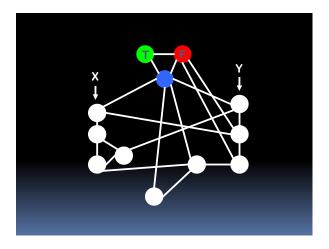
Given: A circuit with n-inputs and one output, is there a way to assign 0-1 values to the input s so that the output value is 1 (true)?

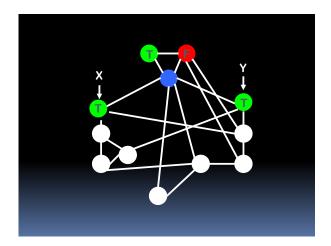
BRUTE FORCE: Try out all 2ⁿ assignments

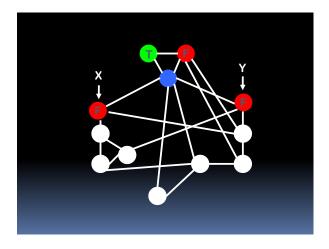
Again, no substantially faster algorithm known (not even c^n time for any constant c < 2)

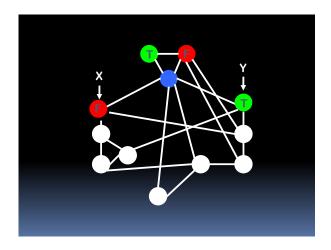


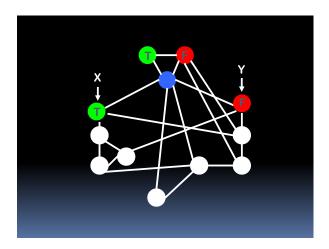


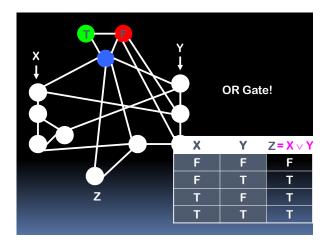


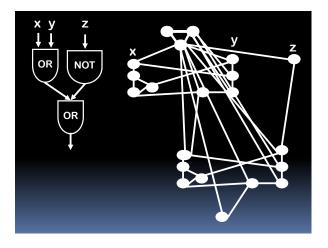


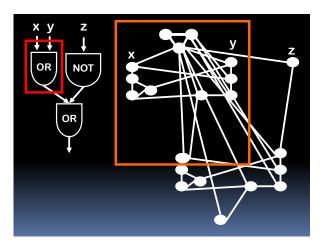


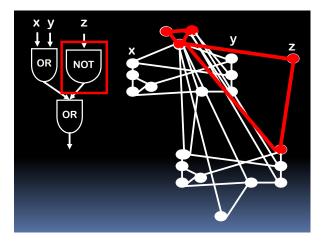


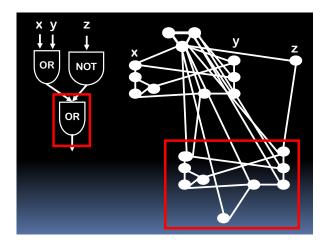


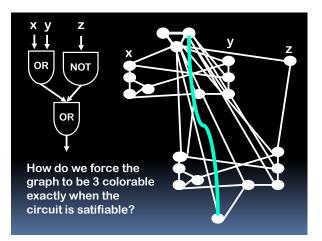


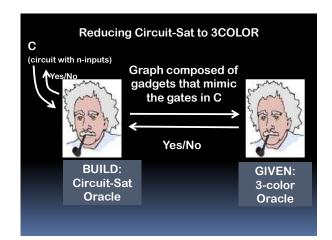






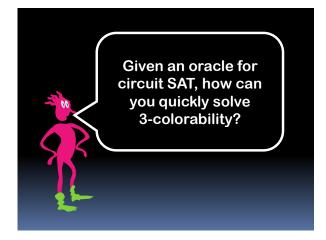


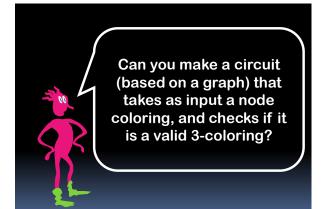


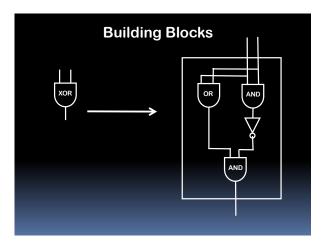


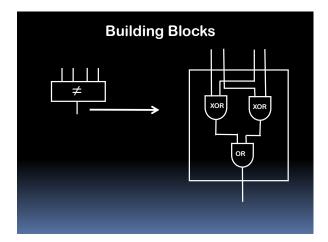
Upshot:

You can quickly transform a method to decide 3-coloring into a method to decide circuit satisfiability!





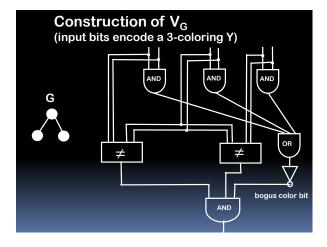


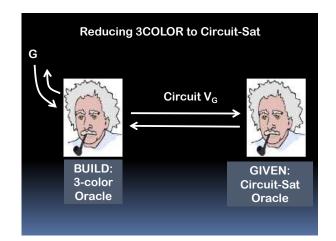


Let $V_G(Y)$ be a circuit constructed for a graph G, that takes as input an assignment of colors to nodes Y, and **verifies** that Y is a valid 3 coloring of G. I.e., $V_G(Y) = 1$ iff Y is a 3 coloring of G

Y is expressed as a 2n bit sequence

Given G, we can construct $V_G(Y)$ in time O(n+m)





Circuit-SAT / 3-Colorability

Two problems that are cosmetically different, but each is "mapping reducible" to the other Circuit-SAT / 3-Colorability

Clique / Independent Set

Given an oracle for circuit SAT, how can you quickly solve k-clique?

Hint: Similar to 3-coloring case.

Given an oracle for k-clique, one can build oracle for circuit SAT. In fact, CircuitSAT mapping reduces to k-clique (We won't prove it, but it is convenient to go through 3SAT. May show reduction from 3SAT to kclique in next lecture/recitation)

Circuit-SAT / 3-Colorability

These four problems are efficiently reducible to each other

FACT: No one knows a way to solve any of the 4 problems that is fast on all instances. But if one of them has such an algorithm, then all of them do!

3SAT

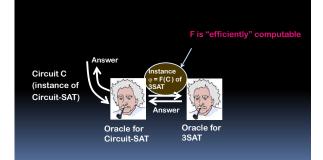
<u>Instance</u>: A *Boolean formula* $\phi = C_1 \wedge C_2 \wedge ... \wedge C_m$

- Variables $x_1, x_2, ..., x_n$ and
- clauses C₁, C₂, ..., C_m,
 each C_i is of the OR of up to 3 literals,eg. [x₁ V x₃ V x₁₇

<u>Decision problem</u>: Is there a Boolean assignment to the variables that satisfies φ (i.e., all the clauses)

3SAT is a special case of Circuit-SAT (Why?) So SAT reduces to Circuit-SAT (given Circuit-SAT oracle can build one for 3SAT)

Reducing Circuit-SAT to 3SAT



How?

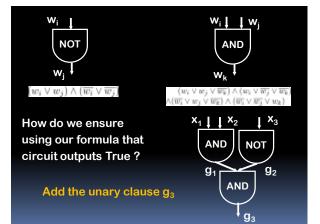
Write a 3CNF formula to simulate the circuit.

- · Variable for each wire of the circuit
- Clauses for each gate, to ensure correct computation of bit on outgoing wire(s) from the (two) bits on incoming wires x₁ | | x₂ | x₃

Write a 3CNF formula to simulate the circuit.

- · Variable for each wire of the circuit
- Clauses for each gate, to ensure correct computation of bit on outgoing wire(s) from the (two) bits on incoming wires





Summary

Many problems that appear different on the surface can be efficiently reduced to each other, revealing a deeper similarity.

Reductions are one of the most versatile and powerful tools in theoretical computer science to understand and relate the computational complexity of problems.