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Turing’s Legacy 

Great Theoretical Ideas in CS 
V. Adamchik CS 15-251 

 Lecture 21   Carnegie Mellon University 

Anything 
 
 
 
 

 says is false! 

 
 

Turing Machine 

Decidable languages 

Computable functions 

Church−Turing Thesis 

Halting Problem  

              (is undecidable) 

Outline 

23 Hilbert’s problems 

#1 The Continuum Hypothesis 

#8 The Riemann Hypothesis 

#10 On solving a Diophantine equations 

#18 The Kepler Conjecture 

In 1900 Hilbert presented a list of 23  

challenging problems in math 

What is a computation/algorithm? 

Hilbert’s 10th problem (1900): 
 

Given a multivariate polynomial w/ integer coeffs, 

e.g. 4x2y3 − 2x4z5 + x8,  

“devise a process according to which it can be 
determined in a finite number of operations” 

whether it has an integer root. 

Mathematicians: “we should probably try to 

 formalize what counts as an ‘algorithm’ ”. 

What is a computation/algorithm? 

It took 30 years before it was described precisely 

 

Hilbert’s Entscheidungsproblem (1928): 
(“decision problem”) 

Given a sentence in first-order logic, 

give an “effectively calculable procedure” 

for determining if it’s provable. 

Mathematicians: “we should probably try to 

            formalize what counts as  

               an ‘algorithm’ ”. 

Gödel (1934): 

Discusses some ideas for definitions of  

what functions/languages are “computable”, 

but isn’t confident what’s a good definition. 

Church (1936): 

Invents lambda calculus, 

claims it should be the definition. 

Gödel, Post (1936): 

Arguments that Church’s isn’t justified. 

Meanwhile… a certain British grad student in 

Princeton, unaware of all these debates… 
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Alan Turing (1936, age 22): 

   Describes a new model of computation, 

   now known as the Turing Machine 

Gödel, Kleene, and even Church: 

“Um, he nailed it.  Game over, computation defined.” 

1937:  Turing proves  TM’s ≡ lambda calculus 

PH.D. student 

of A. Church 

Turing’s Inspiration 

Human writes symbols on paper 

WLOG, the paper is a sequence of squares 

No upper bound on the number of squares 

At most finitely many kinds of symbols 

Human observes one square at a time 

Human has only finitely many mental states 

Human can change symbols and change  
   focus to a neighboring square, but only  
   based on its state and the symbol it observes 

Human acts deterministically 

each cell consists of a symbol 

0 0 0 0 1 0 1 1 

input or the “tape” 

indefinitely extensible  

to the right. 

Machine with the 

read/write 

“head” 

move to left or right 

 by one cell 

# 0 0 0 1 0 1 1 

the “tape alphabet” 

in this example is {0,1,#,⊔} 

(blank) 

the 

read/write 

“head” 

Once we read a cell we replace it with # 

0 0 0 0 1 0 1 1 

Machine with the 

read/write 

“head” 

Illustration of a TM trying to decide {0n1n : n∈ℕ} 

The idea is to match the first zero with the 

last 1 in the tape. So we will go forth and back 

in the tape. 

# 0 0 0 1 0 1 1 

the 

read/write 

“head” 

Illustration of a TM trying to decide {0n1n : n∈ℕ} 
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# 0 0 0 1 0 1 1 

the 

read/write 

“head” 

# 0 0 0 1 0 1 1 

the 

read/write 

“head” 

# 0 0 0 1 0 1 1 

the 

read/write 

“head” 

# 0 0 0 1 0 1 

the 

read/write 

“head” 

# 

# 0 0 0 1 0 1 

the 

read/write 

“head” 

# # 0 0 0 1 0 1 

the 

read/write 

“head” 

# 
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# 0 0 1 0 1 

the 

read/write 

“head” 

# # # 0 0 1 0 1 

the 

read/write 

“head” 

# # 

# 0 0 1 0 1 

the 

read/write 

“head” 

# # # 0 0 1 0 

the 

read/write 

“head” 

# # # 

# 0 0 1 0 

the 

read/write 

“head” 

# # # # 0 0 1 0 

the 

read/write 

“head” 

# # # 
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# 0 1 0 

the 

read/write 

“head” 

# # # # # 0 1 0 

the 

read/write 

“head” 

# # # # 

# 0 1 0 

the 

read/write 

“head” 

# # # # 

REJECT 

Transition rules 

q0 

qreject qaccept 

q1 

qright qleft 

q2 

0,1 / R 

⊔,# / L 

# / L 

0,1 / L 

Formal definition of Turing Machine 

            A Turing Machine is a 7-tuple  

            M = (Q, Σ, Γ, δ, q0, qaccept, qreject): 

Q is a finite set of states, 

q0 ∈ Q is the start state, 

qaccept ∈ Q is the accept state, 

qreject ∈ Q is the reject state,  qreject ≠ qaccept. 

Σ is a finite input alphabet (with ⊔∉Σ), 

Γ is a finite tape alphabet (with ⊔∈Γ,  Σ  Γ) 

δ : Q×Γ → Q×Γ×{L,R} is transition function, 

Rules of computation 

Tape starts with input x∈Σ*, followed by infinite ⊔’s. 

Control starts in state q0, head starts in leftmost square. 

If the current state is q and head is reading symbol s∈Γ,  

the machine transitions according to δ(q,s), which gives: 

            the next state,  

            either erase or write a symbol  

            move the head Left or Right. 

Continues until either the accept state or reject state 

reached. 

When accept/reject state is reached, M halts.   

M might also never halt, in which case we say it loops. 
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Decidable languages 

Definition: 

A language L ⊆ Σ* is decidable if there is  

     a Turing Machine M which: 
 

1.  Halts on every input  x∈ Σ*. 

2.  Accepts inputs x∈L and rejects inputs x∉L.  

Such a Turing Machine is called a decider.   

It ‘decides’ the language L. 
 

We like deciders. We don’t like TM’s that sometimes loop. 

Decidable 

 A problem P is decidable if it can be 
solved by a Turing machine T that 
always halt. (We say that P has an 
effective algorithm.) 

  

 Note that the corresponding language 
of a decidable problem is recursive. 

  

  

  

Undecidable 

 A problem is undecidable if it cannot 
be solved by any Turing machine that 
halts on all inputs. 

  

 Note that the corresponding language 
of an undecidable problem is non-
recursive. 

function f : {0,1}* → {0,1}  ≡  subset L ⊆ {0,1}* 

L ⊆ {0,1}* 

Computable functions 

Note the equivalence between 

languages and functions: 

If L is decidable we call f computable, 

and vice versa. 

Decidable languages 

Examples: 

Hopefully you’re convinced that {0n1n : n∈N} 

     is decidable.  (Recall it’s not “regular”.) 

The language  {02n
 : n∈N} ⊆ {0}*, 

     i.e. {0, 00, 0000, 00000000, …}, 

     is decidable. 

Proof:  we’ll describe a decider TM for it. 
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Describing Turing Machines 

Low Level: 

Explicitly describing all states and transitions. 

Medium Level: 

Carefully describing in English how the TM 

operates.  Should be ‘obvious’ how to  

translate into a Low Level description. 

High Level: 

Skips ‘standard’ details, just highlights  

‘tricky’ details.  For experts only! 

{02n
 : n∈ℕ} is decidable 

Medium Level description: 

1. Sweep from left to right across the tape, 

    overwriting a # over top of every other 0. 
 

2. If you saw one 0 on the sweep, accept. 
 

3. If you saw an odd number of 0’s, reject. 
 

4. Move back to the leftmost square. 
 

5. Repeat, go to step 1 

TM programming exercises 

Convert input x1x2x3···xn to x1⊔x2⊔x3⊔··· ⊔xn. 

Simulate a big Γ by just {0,1,⊔}.      

Increment/decrement a number in binary. 

Copy sections of tape from one spot to another. 

Simulate having 2 tapes, with separate heads. 

Create a Turing Machine U(a,b) whose input is 

           ⟨M⟩, the encoding of a TM M, and 

           x, a string 

   and which simulates the execution of M on x. 

Like writing a Py simulator in Py! 

Church–Turing Thesis: 

“Any natural / reasonable notion of 

computation can be simulated by a TM.” 

This is not a theorem. 

Is it…           …an observation? 

…a definition? 

…a hypothesis? 

…a law of nature? 

…a philosophical statement? 
Well, whatever.  Everyone believes it. 

Is every language in {0,1}* decidable? 

Is every function f : {0,1}*→{0,1} computable? 

Answer: No  

Every TM is encodable by a finite string.   

Therefore the set of all TM’s is countable. 

So the subset of all decider TM’s is 

countable. Thus the set of all decidable 

languages is countable. 

But the set of all languages is uncountable.  

|P({0,1}*)| > |{0,1}*| 

The HELLO Assignment 

Write a program to output the word “HELLO” 
on the screen and halt. 

 
Space and time are not an issue.  
The program is for an ideal computer.  
 
PASS for any working HELLO . 
No partial credit. 
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Grading Script 

The grading script G must be able to take 
any program P and grade it. 

 

                Pass, if P prints only the word                                                         

                          “HELLO” and halts. 

G(P)= 

                Fail, otherwise. 

How exactly might such a script work? 

 
What kind of program could a 

student who hated his 
TA hand in? 

Nasty Program 

n:=0; 

while (n is not a counter-example  

 to the Riemann Hypothesis) { 

 n++; 

} 

print “Hello”; 

 

 
The nasty program is a PASS if and only if the 

Riemann Hypothesis is true. 
 

Despite the simplicity of the 
HELLO assignment, there is no 
program to correctly grade it!  

 

 And we will prove this. 

Some uncomputable functions 

Given a TM description ⟨M⟩ and an input x, 

does M halt on input x? 

This one is called 

The Halting Problem. 

Turing’s Theorem:   

The Halting Problem is undecidable. 

Notation And Conventions 

Fix a single programming language 

 

When we write program P we are talking 
about the text of the source code for P 

 

P(x) means the output that arises from 
running program P on input x, assuming 
that P eventually halts. 
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The meaning of P(P) 

P(P) means the output obtained when  

we run P on the text of its own source  

code. 

The Halting Set K 

Definition: 
K is the set of all programs P such that 

P(P) halts. 
 
 
K = { program P | P(P) halts } 

The Halting Problem 
K = {P | P(P) halts } 

Is the Halting Set K decidable? 

Is there a program HALT such that: 

 

HALT(P) =  yes, if P K, so P(P) halts 

HALT(P) =  no,   if P K, so P(P) doesn’t halt 

 

HALT decides whether or not any given 

program is in K.  

 
THEOREM: There is no program to 

solve the halting problem 
(Alan Turing, 1937) 

Suppose a program HALT that solved the 
halting problem is indeed exist. 

 
 
We will call HALT as a subroutine in a new 

program called CONFUSE.  

CONFUSE 

bool CONFUSE(P) 

{   

   if (HALT(P) == True)  

 then loop forever; 
     

   else return True; 
    

} 
Does CONFUSE(CONFUSE) halt? 

We assume 
that HALT 
solves the 

halting 
problem 

Does CONFUSE(CONFUSE) halt? 

boolean CONFUSE(P) 

{   

   if (HALT(P) == True) then loop forever;      

   else return True;     

} 

Consider two cases: 

1. CONFUSE(CONFUSE) halts 

 
then (by def.) HALT(CONFUSE) is True.  

 
But then CONFUSE will loop forever. 
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Does CONFUSE(CONFUSE) halt? 

boolean CONFUSE(P) 
{   
   if (HALT(P) == True) then loop forever;      
   else return True;     
} 

 
2. CONFUSE(CONFUSE) does not halt 

 
then (by def.) HALT(CONFUSE) is False.  

 
But then CONFUSE halts. 

 
Turing’s argument is essentially 
the reincarnation of Cantor’s 

Diagonalization argument  
 

P0 P1 P2 … Pj … 

P0 

P1 

… 

Pi 

 

… 

A
ll
 P

ro
gr

a
m
s 

All Programs (the input) 

Programs (computable functions) are countable, 
so we can put them in a (countably long) list 

P0 P1 P2 … Pj … 

P0 

P1 

… 

Pi 

 

… 

Yes, if Pi(Pj) halts 
No,      otherwise 

A
ll
 P

ro
gr

a
m
s 

All Programs (the input) 

P0 P1 … Pi … 

P0 d0 

P1 d1 

… … 

Pi di 

 

… … 

CONFUSE(Pi) halts iff di = no 
(The CONFUSE function is the negation of the 
diagonal.) Hence CONFUSE cannot be on this list. 

Let 
di = HALT(Pi)  

 

A
ll
 P

ro
gr

a
m
s 

All Programs (the input) 
Alan Turing (1912-1954) 

Theorem: [1937] 
There is no program to  

solve the halting problem 

Given some code, 

determine if it terminates. 

We know that it is unsolvable by any algorithm. 
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Hilbert’s 10th problem 

Input:  Multivariate polynomial w/ integer coeffs. 

Question:  Does it have an integer root? 

                 Undecidable. 

Question:  Does it have a real root? 

                 Decidable. 

Question:  Does it have a rational root? 

   Not known if it’s decidable or not. 

Richardson’s Problem 

Question:  Can you make an E such that E ≡ 0? 

Theorem (Richardson, 1968):  Undecidable. 

Make an expression E using the rational numbers,  

two real numbers π and ln(2),  

the variable x, and operations +, −, ∙, sin, exp, abs. 

Here’s What 
You Need to 

Know… 

 
 

Turing Machine 
Decidable languages 
Computable functions 
Church−Turing Thesis 
Halting Problem 


