
1

Turing’s Legacy

Great Theoretical Ideas in CS
V. Adamchik CS 15-251

 Lecture 21 Carnegie Mellon University

Anything

 says is false!

Turing Machine

Decidable languages

Computable functions

Church−Turing Thesis

Halting Problem

 (is undecidable)

Outline

23 Hilbert’s problems

#1 The Continuum Hypothesis

#8 The Riemann Hypothesis

#10 On solving a Diophantine equations

#18 The Kepler Conjecture

In 1900 Hilbert presented a list of 23

challenging problems in math

What is a computation/algorithm?

Hilbert’s 10th problem (1900):

Given a multivariate polynomial w/ integer coeffs,

e.g. 4x2y3 − 2x4z5 + x8,

“devise a process according to which it can be
determined in a finite number of operations”

whether it has an integer root.

Mathematicians: “we should probably try to

 formalize what counts as an ‘algorithm’ ”.

What is a computation/algorithm?

It took 30 years before it was described precisely

Hilbert’s Entscheidungsproblem (1928):
(“decision problem”)

Given a sentence in first-order logic,

give an “effectively calculable procedure”

for determining if it’s provable.

Mathematicians: “we should probably try to

 formalize what counts as

 an ‘algorithm’ ”.

Gödel (1934):

Discusses some ideas for definitions of

what functions/languages are “computable”,

but isn’t confident what’s a good definition.

Church (1936):

Invents lambda calculus,

claims it should be the definition.

Gödel, Post (1936):

Arguments that Church’s isn’t justified.

Meanwhile… a certain British grad student in

Princeton, unaware of all these debates…

2

Alan Turing (1936, age 22):

 Describes a new model of computation,

 now known as the Turing Machine

Gödel, Kleene, and even Church:

“Um, he nailed it. Game over, computation defined.”

1937: Turing proves TM’s ≡ lambda calculus

PH.D. student

of A. Church

Turing’s Inspiration

Human writes symbols on paper

WLOG, the paper is a sequence of squares

No upper bound on the number of squares

At most finitely many kinds of symbols

Human observes one square at a time

Human has only finitely many mental states

Human can change symbols and change
 focus to a neighboring square, but only
 based on its state and the symbol it observes

Human acts deterministically

each cell consists of a symbol

0 0 0 0 1 0 1 1

input or the “tape”

indefinitely extensible

to the right.

Machine with the

read/write

“head”

move to left or right

 by one cell

0 0 0 1 0 1 1

the “tape alphabet”

in this example is {0,1,#,⊔}

(blank)

the

read/write

“head”

Once we read a cell we replace it with #

0 0 0 0 1 0 1 1

Machine with the

read/write

“head”

Illustration of a TM trying to decide {0n1n : n∈ℕ}

The idea is to match the first zero with the

last 1 in the tape. So we will go forth and back

in the tape.

0 0 0 1 0 1 1

the

read/write

“head”

Illustration of a TM trying to decide {0n1n : n∈ℕ}

3

0 0 0 1 0 1 1

the

read/write

“head”

0 0 0 1 0 1 1

the

read/write

“head”

0 0 0 1 0 1 1

the

read/write

“head”

0 0 0 1 0 1

the

read/write

“head”

0 0 0 1 0 1

the

read/write

“head”

0 0 0 1 0 1

the

read/write

“head”

4

0 0 1 0 1

the

read/write

“head”

0 0 1 0 1

the

read/write

“head”

0 0 1 0 1

the

read/write

“head”

0 0 1 0

the

read/write

“head”

0 0 1 0

the

read/write

“head”

0 0 1 0

the

read/write

“head”

5

0 1 0

the

read/write

“head”

0 1 0

the

read/write

“head”

0 1 0

the

read/write

“head”

REJECT

Transition rules

q0

qreject qaccept

q1

qright qleft

q2

0,1 / R

⊔,# / L

/ L

0,1 / L

Formal definition of Turing Machine

 A Turing Machine is a 7-tuple

 M = (Q, Σ, Γ, δ, q0, qaccept, qreject):

Q is a finite set of states,

q0 ∈ Q is the start state,

qaccept ∈ Q is the accept state,

qreject ∈ Q is the reject state, qreject ≠ qaccept.

Σ is a finite input alphabet (with ⊔∉Σ),

Γ is a finite tape alphabet (with ⊔∈Γ, Σ Γ)

δ : Q×Γ → Q×Γ×{L,R} is transition function,

Rules of computation

Tape starts with input x∈Σ*, followed by infinite ⊔’s.

Control starts in state q0, head starts in leftmost square.

If the current state is q and head is reading symbol s∈Γ,

the machine transitions according to δ(q,s), which gives:

 the next state,

 either erase or write a symbol

 move the head Left or Right.

Continues until either the accept state or reject state

reached.

When accept/reject state is reached, M halts.

M might also never halt, in which case we say it loops.

6

Decidable languages

Definition:

A language L ⊆ Σ* is decidable if there is

 a Turing Machine M which:

1. Halts on every input x∈ Σ*.

2. Accepts inputs x∈L and rejects inputs x∉L.

Such a Turing Machine is called a decider.

It ‘decides’ the language L.

We like deciders. We don’t like TM’s that sometimes loop.

Decidable

 A problem P is decidable if it can be
solved by a Turing machine T that
always halt. (We say that P has an
effective algorithm.)

 Note that the corresponding language
of a decidable problem is recursive.

Undecidable

 A problem is undecidable if it cannot
be solved by any Turing machine that
halts on all inputs.

 Note that the corresponding language
of an undecidable problem is non-
recursive.

function f : {0,1}* → {0,1} ≡ subset L ⊆ {0,1}*

L ⊆ {0,1}*

Computable functions

Note the equivalence between

languages and functions:

If L is decidable we call f computable,

and vice versa.

Decidable languages

Examples:

Hopefully you’re convinced that {0n1n : n∈N}

 is decidable. (Recall it’s not “regular”.)

The language {02n
 : n∈N} ⊆ {0}*,

 i.e. {0, 00, 0000, 00000000, …},

 is decidable.

Proof: we’ll describe a decider TM for it.

7

Describing Turing Machines

Low Level:

Explicitly describing all states and transitions.

Medium Level:

Carefully describing in English how the TM

operates. Should be ‘obvious’ how to

translate into a Low Level description.

High Level:

Skips ‘standard’ details, just highlights

‘tricky’ details. For experts only!

{02n
 : n∈ℕ} is decidable

Medium Level description:

1. Sweep from left to right across the tape,

 overwriting a # over top of every other 0.

2. If you saw one 0 on the sweep, accept.

3. If you saw an odd number of 0’s, reject.

4. Move back to the leftmost square.

5. Repeat, go to step 1

TM programming exercises

Convert input x1x2x3···xn to x1⊔x2⊔x3⊔··· ⊔xn.

Simulate a big Γ by just {0,1,⊔}.

Increment/decrement a number in binary.

Copy sections of tape from one spot to another.

Simulate having 2 tapes, with separate heads.

Create a Turing Machine U(a,b) whose input is

 ⟨M⟩, the encoding of a TM M, and

 x, a string

 and which simulates the execution of M on x.

Like writing a Py simulator in Py!

Church–Turing Thesis:

“Any natural / reasonable notion of

computation can be simulated by a TM.”

This is not a theorem.

Is it… …an observation?

…a definition?

…a hypothesis?

…a law of nature?

…a philosophical statement?
Well, whatever. Everyone believes it.

Is every language in {0,1}* decidable?

Is every function f : {0,1}*→{0,1} computable?

Answer: No

Every TM is encodable by a finite string.

Therefore the set of all TM’s is countable.

So the subset of all decider TM’s is

countable. Thus the set of all decidable

languages is countable.

But the set of all languages is uncountable.

|P({0,1}*)| > |{0,1}*|

The HELLO Assignment

Write a program to output the word “HELLO”
on the screen and halt.

Space and time are not an issue.
The program is for an ideal computer.

PASS for any working HELLO .
No partial credit.

8

Grading Script

The grading script G must be able to take
any program P and grade it.

 Pass, if P prints only the word

 “HELLO” and halts.

G(P)=

 Fail, otherwise.

How exactly might such a script work?

What kind of program could a

student who hated his
TA hand in?

Nasty Program

n:=0;

while (n is not a counter-example

 to the Riemann Hypothesis) {

 n++;

}

print “Hello”;

The nasty program is a PASS if and only if the

Riemann Hypothesis is true.

Despite the simplicity of the
HELLO assignment, there is no
program to correctly grade it!

 And we will prove this.

Some uncomputable functions

Given a TM description ⟨M⟩ and an input x,

does M halt on input x?

This one is called

The Halting Problem.

Turing’s Theorem:

The Halting Problem is undecidable.

Notation And Conventions

Fix a single programming language

When we write program P we are talking
about the text of the source code for P

P(x) means the output that arises from
running program P on input x, assuming
that P eventually halts.

9

The meaning of P(P)

P(P) means the output obtained when

we run P on the text of its own source

code.

The Halting Set K

Definition:
K is the set of all programs P such that

P(P) halts.

K = { program P | P(P) halts }

The Halting Problem
K = {P | P(P) halts }

Is the Halting Set K decidable?

Is there a program HALT such that:

HALT(P) = yes, if P K, so P(P) halts

HALT(P) = no, if P K, so P(P) doesn’t halt

HALT decides whether or not any given

program is in K.

THEOREM: There is no program to

solve the halting problem
(Alan Turing, 1937)

Suppose a program HALT that solved the
halting problem is indeed exist.

We will call HALT as a subroutine in a new

program called CONFUSE.

CONFUSE

bool CONFUSE(P)

{

 if (HALT(P) == True)

 then loop forever;

 else return True;

}
Does CONFUSE(CONFUSE) halt?

We assume
that HALT
solves the

halting
problem

Does CONFUSE(CONFUSE) halt?

boolean CONFUSE(P)

{

 if (HALT(P) == True) then loop forever;

 else return True;

}

Consider two cases:

1. CONFUSE(CONFUSE) halts

then (by def.) HALT(CONFUSE) is True.

But then CONFUSE will loop forever.

10

Does CONFUSE(CONFUSE) halt?

boolean CONFUSE(P)
{
 if (HALT(P) == True) then loop forever;
 else return True;
}

2. CONFUSE(CONFUSE) does not halt

then (by def.) HALT(CONFUSE) is False.

But then CONFUSE halts.

Turing’s argument is essentially
the reincarnation of Cantor’s

Diagonalization argument

P0 P1 P2 … Pj …

P0

P1

…

Pi

…

A
ll
 P

ro
gr

a
m
s

All Programs (the input)

Programs (computable functions) are countable,
so we can put them in a (countably long) list

P0 P1 P2 … Pj …

P0

P1

…

Pi

…

Yes, if Pi(Pj) halts
No, otherwise

A
ll
 P

ro
gr

a
m
s

All Programs (the input)

P0 P1 … Pi …

P0 d0

P1 d1

… …

Pi di

… …

CONFUSE(Pi) halts iff di = no
(The CONFUSE function is the negation of the
diagonal.) Hence CONFUSE cannot be on this list.

Let
di = HALT(Pi)

A
ll
 P

ro
gr

a
m
s

All Programs (the input)
Alan Turing (1912-1954)

Theorem: [1937]
There is no program to

solve the halting problem

Given some code,

determine if it terminates.

We know that it is unsolvable by any algorithm.

11

Hilbert’s 10th problem

Input: Multivariate polynomial w/ integer coeffs.

Question: Does it have an integer root?

 Undecidable.

Question: Does it have a real root?

 Decidable.

Question: Does it have a rational root?

 Not known if it’s decidable or not.

Richardson’s Problem

Question: Can you make an E such that E ≡ 0?

Theorem (Richardson, 1968): Undecidable.

Make an expression E using the rational numbers,

two real numbers π and ln(2),

the variable x, and operations +, −, ∙, sin, exp, abs.

Here’s What
You Need to

Know…

Turing Machine
Decidable languages
Computable functions
Church−Turing Thesis
Halting Problem

