Great Theoretical Ideas in CS

V. Adamchik €S 15-251
Carnegie Mellon University

Finite Automata

Deterministic Finite Automaton

A machine so simple that you can
understand it in just one minute
c o

Outline

DFA

Regular Languages
0" is not regular
Union Theorem
Kleene's Theorem
NFA

Application: KMP

Yo
ho

The machine processes a string and accepts
it if the process ends in a double circle

RN

The unique string of length O will be denoted
by and will be called the empty or null string

accept states (F)
start state (qo) o
0,1 (‘ 1
N A TN
0111 —p
v\o y
transitions O /
States

The machine accepts a string if the process
ends in an accept state (double circle)

Anatomy of a Deterministic Finite
Automaton

The singular of automata is automaton.

The alphabet Z of a finite automaton is the
set where the symbols come from, for
example {0,1}

The language L(M) of a finite automaton is
the set of strings that it accepts

L(M) = {xeXZ: M accepts x}
It's also called the
“language decided/accepted by M".

The Language L(M) of Machine M

m 0,1

L(M) = All strings of Os and 1s

The language of a finite automaton is the set
of strings that it accepts

The Language L(M) of Machine M
No No
1
=
1

What language does this DFA decide/accept?

L(M)= {w | w has an even number of 1s}

Formal definition of DFAs
A finite automaton is a 5-tuple M = (Q, £, 3, qo, F)

Q is the finite set of states

X is the alphabet

8:Qx X — Q isthe transition function
qo € Q is the start state

F < Q is the set of accept states

L(M) = the language of machine M
= set of all strings machine M accepts

M = (Qr Z, 8: qO’ F)
where

Q ={q0. 91, 92, 93}
z={0,1}
Qo € Q is start state
F ={q., 9,} = Q accept states

8 :Q x X — Q transition function

s | o 1
Yo Yo 1
a1 SP) P!
qz ds dz

ds Yo [P}

EXAMPLE

An automaton that accepts all
and only those strings that
contain 001

1 0 0,1

A, .0, 0
— ::(0)—>(00}

1

Determine the language
recognized by

L &

L(M)={1,11,111, .}

Determine the language
decided by

L(M)={1, 01}

Membership problem

Determine whether some
word belongs to the language.

Regular Languages

A language over X is a set of strings over X

A language L € X is regular if it is recognized by a
deterministic finite automaton

A language L < X is regular if there is
a DFA which decides it.

L = {w | w contains 001} is regular

L ={w | w has an even number of 1s} is regular

DFA Membership problem

Determine whether some
word belongs to the language.

Theorem: The DFA Membership Problem is
solvable in linear time.

Let M=(Q, Z, 8, gy, F) and w = wy...w,,.
Algorithm for DFA M:

P = Qo

fori:=1tomdop:=35(pw)

if peF then return Yes else return No.

Are all languages
regular?

Theorem: Any finite language is
regular

Theorem: Any finite language is regular
Claim 1: Let w be a string over an alphabet. Then
{w} is a regular language.

Proof: By induction on the number of characters.
If {a} and {b} are regular then {ab} is regular

Claim 2: A language consisting of n strings is
regular

Proof: By induction on the number of strings. If
{a} then Lu{a} is regular

Theorem: L = {0O"1": neN} is not regular
Notation:
If a€X is a symbol and neN then a" denotes

the string aaa-—a (n times).

E.g., a® means aaa, a® means aaaaa,
al means a, ameans e, etc.

Thus L = {¢, 01, 0011, 000111, 00001111, ..}.

Theorem: L = {0O"1": neN} is not regular

Wrong Intuition:

For a DFA to decide L, it seems like it needs
to "remember” how many O's it sees at the

beginning of the string, so that it can
“check” there are equally many 1's.
But a DFA has only finitely many states —
shouldn't be able to handle arbitrary n.

L = strings where the number of
occurrences of 01 is equal to the number
of occurrences of 10

M accepts only the strings with an equal
number of 01's and 10's!

For example, 010110

How to prove a language is NOT
regular...

Assume for contradiction there is a DFA M with
L(M)=L.

Argue (usually by Pigeonhole) there are two
strings x and y which reach the same state in M.

Show there is a string z such that xz€el but yzé¢L.
Contradiction, since M accepts either both (or
neither.)

Theorem: L = {O"": neN} is not regular

Full proof:
Suppose M is a DFA deciding L with, say, states.

Let r; be the state M reaches after processing O'.
By Pigeonhole, there is a repeat among

ro, M, a, ..., P So say that ry = r, for some s # 1.

Since 015 € L, starting from r, and processing 15

causes M to reach an accepting state.

Theorem: L = {0O"l": neN} is not regular

Full proof:
So on input 015 € L, M will reach an accepting state.

Consider input 015 ¢ L, szt.
M will process 0F, reach state r; = rg

then M will process 1%, and reach an accepting state.

Contradiction!

Regular Languages

Definition: A language L < X is regular if there is
a DFA which decides it.

Questions:
1. Are dll languages regular?
2. Are there other ways to tell if L is regular?

Equivalence of two DFAs

Definition: Two DFAs M; and M, over the same
alphabet are equivalent if they

accept the same language: L(M;) = L(M,).

Given a few equivalent machines, we are
naturally interested in the smallest one
with the least number of states.

Union Theorem

Given two languages, L; and L,, define
the union of L;and L, as

LuLb,={w|weljorwel,}

Theorem: The union of two regular
languages is also a regular language.

Theorem: The union of two regular
languages is also a regular language

Proof (Sketch): Let
M;= (Qy, Z, 8, qo, F;) be finite automaton for L,
and
M; = (Q,, Z, 3,, qq, F») be finite automaton for L,

We want to construct a finite automaton
M=(Q, Z,38, qo, F) that recognizes L= L, U L,

Idea: Run both M; and M, at the same time.

Union Theorem l

L, = strings with @ 0
even # of 1's M, D
lI 1

L, = strings x with
[x| div. by 3
©>
‘ 01 0,1
— _>
Ol

Union Theorem |
©>
1I 1
:>o
01, 01,
—Q0=

Input: 101001

t

Union Theorem]
©>
1I 1
©>
_o1, &
—~Q0=

Input: 01001

Union Theorem |
©>
1I 1
D"
01, 01,
~Q0=

Input: 1001

Input: 001

!
Oo:
]_I 1

©D:
O 1 __£L£’>
o O

Union Theorem |
©>
1I 1
:>o
01, 01,
~Q0=

Input: 01

Union Theorem l
@D"
1I 1
O
"llll’ 0 1 0,1
—_— _>
y

Input: 1

Union Theorem |
©>
1I 1
:>o
01, 01,
Q0=

Input:

Accept.

Union Theorem l

. @D
1”1

ept
M
2 0,1 0,1
)=

Make a DFA keeping
track of both at once.

Union Theorem
Q = pairs of states, one from M; and one from M,

={(91.92) | g1 e Qand g, € Q, }

:leiz/—\

0 0

The Regular Operations
Unionn AuB={w|weAorweB}
Intersectionn AnB={w|weAandwe B}
Negation: —A={w|we¢ A}

Reverse: AR = {w;.w, | w,.w e A}

Concatenationt A-B={vw|ve Aandw e B}

Star: A* = {w;.wy | k20and eachw; € A}

The Kleene closure: A*

Star: A* = {w;.w, | k>0Oand eachw; € A}

From the definition of the concatenation,
we definite A", n =0, 1, 2, ... recursively
AC = {g}

Arl= An A

A* is a set consisting of concatenations
of arbitrary many strings from A.

A* = A"
k=0

The Kleene closure: A*
What is A* of A={0,1}?

All binary strings

What is A* of A={11}?

All binary strings of an even
number of 1s

Regular Languages Are Closed
Under The Regular Operations

An axiomatic system for regular languages
Vocabulary: Languages over alphabet

Axioms: @, {a} for each aeX

Deduction rules:
Given Ly, L,, can obtainL; U L,
Given Ly, L,, can obtain L, - L,
Given L, can obtain L”

The Kleene Theorem (1956)

Every regular language over X can be
constructed from ¢ and {a}, a € Z, using only
the operations union, concatenation

and the Kleene star.

Reverse
Reverse: AR = {w;.w | we.w;e A}

How to construct a DFA for the reversal
of a language?

1 0.1
The direction in which we O
read a string should be 0
irrelevant. @ !
If we flip transitions ! 2!
around we might not get o Q
a DFA. @ q:

Nondeterministic Finite Automaton

There is another type
machine in which there /
may be several possible o
next states. Such —_— g —
machines called
nondeterministic. a

Allows transitions from g, on the same
symbol to many states

Nondeterministic finite automaton
(NFA)

Nondeterminism can arise from two different
sources:

-Transition nondeterminism

-Initial state nondeterminism

Nondeterministic finite automaton
(NFA)

An NFA is defined using the same
notations M = (Q, Z,5, I, F)
as DFA except the initial states I and
the transition function § assigns a set of
states to each pair Q x Z of state and
input.

Note, every DFA is automatically also NFA.

NFA for {Ok | k is a multiple of 2 or 3}

0

Find the language recognized by this
NFA

L={0",001,0M1|n=0,1,2.}

What does it mean that for an NFA to
recoghize a string?

0
0
S| m— Sy

0,1

Since each input symbol x; (for j>1) takes the
previous state to a set of states, we shall use a
union of these states.

What does it mean that for a NFA to
recoghize a string?

Here we are going formally define this.

For a state q and string w, 8"(q, w) is the set of
states that the NFA can reach when it reads the
string w starting at the state q.

Thus for NFA= (Q, Z, 5, qq, F), the function
QXX ->29

is defined by 3°(q, ¥ Xi) = Upesr(qy) 3(P.X1)

Find the language recognized by this
NFA

O S

—_ 5

L = 17(01, 1, 10) (00)*

Nondeterministic finite automaton

Theorem.
If the language L is recognized by an NFA,
then L is also recognized by a DFA.

In other words,

if we ask if there is a NFA that is not
equivalent to any DFA. The answer is No.

Nondeterministic finite automaton

Theorem (Rabin, Scott 1959).
For every NFA there is an equivalent DFA.

For this they won the Turing Award.

CMU prof.
emeritus

NFA vs. DFA

Advantages.

Easier to construct and manipulate.
Sometimes exponentially smaller.
Sometimes algorithms much easier.

Drawbacks
Acceptance testing slower.

Sometimes algorithms more complicated.

Pattern Matching

[nput: Text T of length k, string/pattern P of length n

Problem: Does pattern P appear inside text T?
Naive method:

Cost: Roughly O(n k) comparisons

may occur in images and DNA sequences
unlikely in English text

Pattern Matching

Input: Text T, length n. Pattern P, length k.

Output: Does P occur in T?

Automata solution:

The language P is regular!

There is some DFA M, which decides it.
Once you build M, feed in T: takes time O(n).

Build DFA from pattern

The alphabet is {a, b}.
The patternisaabaaabb.

To create a DFA we consider all prefixes
€, a, aa, aab, aaba, aabaa, aabaaa, aabaaab,
aabaaabb

These prefixes are states. The initial state
is €. The pattern is the accepting state.

DFA Construction
a

t

a
0 =—p 1

DFA Construction
aa

t

Ga—blla—bz
A
b

10

DFA Construction
aab

t

C;a—blla—bziya
A
b

DFA Construction
aaba

t

™
b a
0 m=b 1 == 2 —p 3 —p 4
e
b
b

N . S

DFA Construction
aabaa

DFA Construction
aabaaa

o)

b
0?1?2—;3?4?57’6

Q_b/w

DFA Construction
aabaaab

t

DFA Construction
aabaaabb

t

R
e N R P SNt IR
€~°2 ragbirugts 7

b

b a

11

The Knuth-Morris-Pratt Algorithm (1976)

1970 Cook published a paper about a possibility of
existence of a linear time algorithm

Knuth and Pratt developed an algorithm

Morris discovered the same algorithm

Pittsburgh native,
CMU professor.

The KMP Algorithm - Motivation

Algorithm compares the
pattern to the text in

left-to-right, but shifts[[[d & d 4

A TT11]

the pattern more

[
intelligently than the (A dd83
[

brute-force algorithm.
When a mismatch

occurs, we compute the [d&ddbd
length of the No need + [| \
f P thatisa oneed fol + '\ Resume
or- ! repeat these comparin
mparing
proper suffix of P. comparisons here

Languages

DFAs

The regular operations
0" is not regular
Union Theorem
Kleene's Theorem

Here's What NFAs
You Need to Application: KMP
Know...

12

