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Cryptography: A land of 

counterintuitive possibilities 

• Alice and Bob can agree on a secret key over a 

public channel 

• Alice can convince Bob she knows something – 

say proof of twin prime conjecture – with Bob 

learning nothing about the proof 

• Anyone can publicly send an encrypted 

message to Bob that only he can decrypt, 

without any pre-agreed upon secret 

Cryptography: A land of 

counterintuitive possibilities 

• One can delegate computation of any function 

on encrypted data without revealing anything 

about the inputs 

• Millionaires' Problem: Alice and Bob can find out 

who has more money without revealing anything 

else about their worth 

• One can learn a piece of data from a database 

without the database learning anything about 

your desired query 

• …. 

 

Private/Symmetric Key Encryption 

One Time Pads 

Add (XOR) a secret key, shared between  

sender &receiver,  to the message. 

One Time Pads 

Gives perfect security!  

For random shared key,  

leaks no information about message 
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But reuse is bad 

XOR = 

Agreeing on a secret 

 

One time pads rely on having a shared secret! 

 

Need a separate secret  for each pair of 

communicating parties. 

 

Does this require private communication to agree on 

the secret? 

 

Can Alice and Bob agree on a secret over a public 

conversation? 

Diffie-Hellman Key Exchange 
 

Alice: Picks prime p, and a generator g in Zp* 

 Picks random number a  {1,2,…,p-1} 

 Sends over p, g, ga (mod p) to Bob 

 

Bob: Picks random b  {1,2,…,p-1} and sends 

over gb (mod p) to Alice 

 

Now both can compute the shared “secret” 

gab (mod p) 

It’s good there are hard problems! 

Alice: Picks prime p, and a value g in Zp* 

 Picks random a in  {1,2,…,p-1} 

 Sends over p, g, ga (mod p) 

 

Bob:  Picks random b in {1,2,…,p-1}, and  

 sends over gb (mod p) 

 

Secret: gab (mod p) 

Given ga , a is uniquely 

determined. 

So why is this secure? 

Crypto needs hard problems to keep bad guys at bay (privacy) 

But good guys should be able to achieve desired functionality 

This delicate balance is the challenge and beauty of  crypto 

Discrete Log intractability assumption:  

   Given input a large prime p, g in Zp
*, and x=ga, 

   it is hard to compute a ( = logg x)  

Hard algebraic problems 

Algebra (groups, number theory)  

is a great source of  problems meeting 

these demands. 

Hardness to keep bad guys at bay (privacy) 

Easiness for good guys  to operate (functionality) 

What about Eve? 

 If  Eve’s just listening in,    

 she sees p, g, ga, gb 
 

  

To say Eve learns nothing about the shared secret (eg. its first bit), 

need gab (mod p) to be look like a random element of Zp
* 

(This is Decisional Diffie-Hellman (DDH) assumption;  

      not valid for Zp* but there are other candidate cyclic groups) 

Alice: Picks prime p, and a value g in Zp* 

 Picks random a in  {1,2,…,p-1} 

 Sends over p, g, ga (mod p) 

 

Bob:  Picks random b in {1,2,…,p-1}, and  

 sends over gb (mod p) 

 

Secret: gab (mod p) 

Diffie-Hellman  assumption 

computing gab (mod p) from  

p, g, ga, gb  is hard 
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Why these assumptions?  

Discrete-Log: Given p, g, ga (mod p), compute a 

 

Finding discrete logarithms seems hard, but proving 

the hardness seems even harder! 

 

Proving intractability of Discrete-Log is harder than 

the P vs. NP problem 

 

Complexity-theoretic cryptography relies on 

assumptions on the presumed intractability of some 

(classes) of problems. 

• Information-theoretic crypto: no hardness assumptions 

(eg. one time pad) 

 

 

Diffie Hellman key exchange requires both parties  

to exchange information to share a secret 

Can we get rid of this assumption? 

 

Can someone who I have never spoken to  

send me a message over a public channel 

that is only intelligible to me  

Public Key Encryption 

 

Public Key Encryption 

[Diffie-Hellman] 

Goal: Enable Alice to send encrypted message 

 to Bob without their sharing any secret  

 

Anyone should be able to send Bob a  

message in encrypted form. 

 

Only  Bob should be able to decrypt. 

 

Anyone  can send Bob a message in encrypted form. 

Only  Bob should be able to decrypt.  

 

Bob has to be “special” somehow… 

 

Bob holds a special “secret key” that only he 

knows and that enables him to decrypt 

•  (Hopefully) decryption intractable without   

 knowledge of this secret. 

•  Physical analogy:  key to a locked box 

HOW ??? 

 

Bob holds a “secret key” (known only to him) that 

enables him to decrypt 

•    Physical analogy:  key to a locked box 

Encryption (Physical analogy): 

•    Place message in a locked box with a “lock”    

 that only Bob’s key can open. 

 

How to get hold of such lock(s)? 

  

 
Bob  “gives  them”  to  everyone!! 

 
Bob has a “public key”, known to everyone,  

which can be used for encryption.  
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Public Key Encryption 

Bob generates a (PK,SK) pair. 

•  Publishes PK.  

•     Holds on to SK as a secret 

 
Encryption of message m: Enc(m, PK) 

 

 

Pair of fns. (Enc,Dec) for encryption & decryption 

 

•  Anyone can encrypt (as PK is public) 

Decryption of ciphertext c: Dec(c, SK) 

 

 
•  Bob knows SK so can decrypt. 

Of course, must have Dec(Enc(m,PK),SK) = m 

Take 1 

Alice, who has never spoken to Bob, wants 

to send him message m in encrypted form Enc(m) 

Recovering m from Enc(m) should be a hard problem 

How about Enc(m) = gm mod p 

(where g,p are public knowledge) 

Discrete log hardness privacy from eavesdropper 

But how will Bob figure out m ??  

• He has to solve the same discrete log problem! 

• Seems tricky to give him an egde 

 

The RSA Cryptosystem 

 

Modular Arithmetic  

Interlude #3 Fundamental lemmas mod n: 

Suppose x  y (mod n) and a  b (mod n). Then 

1) x + a  y + b (mod n) 

2) x * a  y * b (mod n) 

3) x - a  y – b (mod n) 

So instead of doing +,*,- and taking remainders, we can 

first take remainders and then do arithmetic. 

 

Modular arithmetic 
Defn: For integers a,b, and positive integer n, 

  a  b (mod n)   means  

    (a-b) is divisible by n, or equivalently 

    a mod n = b mod n   (x mod n is remainder of x when  

                          divided by n, and belongs to {0,1,…,n-1} ) 

 

Fundamental lemma of  powers? 

 

If  x  y (mod n) 

Then ax  ay  (mod n) ? 

NO!  

2  5 (mod 3) , but it is 

not the case that:  

22  2
5   (mod 3) 

(Correct) rule for powers. 

Equivalently, for a  Zn
*,  ax  ax mod (n) (mod n) 

If a  Zn
*  and x  y  (mod (n))  

then ax  ay (mod n) 

Euler’s theorem: for a  Zn
*, a(n)  1 (mod n) 

If x = q (n)+r, 

Then ax = aq (n) ar  ar (mod n) 
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Example… 

5121242653 (mod 11) 

121242653 (mod 10) = 3 

53 (mod 11) = 125 mod 11 = 4 

Why did we 

take mod 10? 

343281327847324 mod 39 

Step 1: reduce the base mod 39 

Step 2: reduce the exponent mod Φ(39) = 24 

Step 3: use repeated squaring to compute 34,  

  taking mods at each step 

NB: you should check that gcd(343281,39)=1 to use lemma of  powers 

RSA prepwork I: computing in Zn
*  

Computing in Zn
* 

 

•  Multiplication: easy, just multiply mod n 

•  Exponentiation: To compute am, do  

   “repeated squaring” 

  log2 m multiplies mod n 

•  Inverses: To compute a-1 

• use extended Euclid algorithm to compute 

 r,s such that r a + s n = 1. 

• Then a-1 = r mod n. 

How do you compute… 

58 

First idea: 

5 52 53 54 55 56 57 58 

= 5*5 = 52*5 

using few multiplications? 

How do you compute… 

58 

Better idea: 

5 52 54 58 

= 5*5 = 52*52 = 54*54 

Used only 3 mults 

instead of  7 !!! 

Repeated squaring calculates 

a2k 

in k multiply operations 

compare with 

(2k – 1) multiply 

operations 

used by the naïve method 
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How do you compute… 

513 

516 

too high! what now? 

assume no divisions allowed… 

Use repeated squaring again? 

5 52 54 58 

How do you compute… 

513 

Use repeated squaring again? 

5 52 54 58 

Note that 13 = 8+4+1 

So a13 = a8 * a4 * a1 

Two more multiplies! 

1310 = (1101)2 

To compute am 

Suppose 2k ≤ m < 2k+1 

a a2 a4 a8 

This takes k multiplies 

Now write m as a sum of  distinct powers of  2 

am = a2k
 * a2i1

 * … * a2it
  

a2k 
. . . 

say, m = 2k + 2i1 + 2i2 … + 2it 

at most k more multiplies 

Hence, we can compute  

am  

while performing  at most  

2 log2 m multiplies 

How do you compute… 

513 (mod 11) 

First idea: Compute 513 using 5 multiplies 

5 52 54 58 512 513 

= 58*54 = 512*5 

then take the answer mod 11 

= 1 220 703 125 

1220703125 (mod 11) = 4 

How do you compute… 

513 (mod 11) 

Better idea: keep reducing the answer mod 11 

5 52 54 58 512 513 

´11 3 ´11 9 
´11 81 ´11 36 ´11 15 

´11 4 ´11 3 ´11 4 

 25 
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Hence, we can compute  

am (mod n) 

while performing  at most  

2 log2 m multiplies 

where each time we multiply 

together numbers  

with log2 n + 1 bits 

Z15
*  = {1 ≤ x  15 | gcd(x,15) = 1}  

= {1,2,4,7,8,11,13,14} 

 
* 1 2 4 7 8 11 13 14 

1 1 2 4 7 8 11 13 14 

2 2 4 8 14 1 7 11 13 

4 4 8 1 13 2 14 7 11 

7 7 14 13 4 11 2 1 8 

8 8 1 2 11 4 13 14 7 

11 11 7 14 2 13 1 8 4 

13 13 11 7 1 14 8 4 2 

14 14 13 11 8 7 4 2 1 

(15) = 8 

Theorem: If p,q are distinct primes then 

 Φ(pq) = (p-1)(q-1)  

Proof: We need to count how many numbers in 

 {1,2,3,…,pq-1} are relatively prime to pq. 

 

Let us count those that are not, and subtract from (pq-1). 

 

These are 

 (i) the multiples of p:  p, 2p, 3p, …, (q-1)p 

 (ii) the multiples of q:   q, 2q, 3q, …, (p-1)q 

 
Total = q-1 + p-1=p+q-2 

 

So Φ(pq) = pq-1 – (p+q-2) = pq-p-q+1 = (p-1) (q-1) 

RSA prepwork  
RSA Cryptosystem 

Rivest, Shamir, Adleman: 

2002 A.M. Turing Award 

Pick secret, random large 

primes: p,q  

Multiply n = p*q 

“Publish”: n 

 

(n) = (p) (q) = (p-1)*(q-1) 

Pick random e  Z*
(n) 

“Publish”: e 

 

Compute d = inverse of  e in Z*
(n) 

Hence, ed  1 (mod (n)) 

“Private/secret Key”: d 

The RSA Cryptosystem 

n,e is my  

public key.  

Use it to  

send me a  

message. 

p,q random primes 

e random  Z*
(n) 

n = pq 

e*d 1 (mod (n) ) 
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PK: (n, e) 

p,q prime, e random  Z*
(n) 

n = p*q 

e*d = 1 [ mod (n) ] 

message 
m  Zn

* 

Enc(m,PK)= 
me mod n 

(me)d mod n = 
m 

SK: d 

RSA: Simple example 

How hard is breaking RSA? 

If we can factor products of two large primes,  

can we crack RSA? 

 

 

If we can compute Φ(n) from n, can we crack RSA? 

 

 

How about the other way? Does cracking RSA mean 

we must be able do one of these two?  

We don’t know this… 

What does (breach of) security 

mean? 

Certainly complete recovery of m by bad guys 

But also learning partial information about  m 

• eg. value of m (say salary info) up to +/- $1000 

How to define security to capture the requirement 

 that  no information about m is leaked? 

Information-theoretic  

 perfect secrecy  

For the one time pad solution, the eavesdroppers  

have no clue about m, regardless of computing power 

• The distribution of ciphertexts does not 

   depend on m 

•  Say adversary knows either m0 or m1 

    was sent, and sees the ciphertext. 

•    Still can’t tell which of m0 or m1 was sent  

     better than 50-50 guessing  

•   Thus seeing the ciphertext has no bearing  

    on adversaries abilities to learn m 

What about computational security 

in Public Key Encryption? 
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Great Definitions & Solution Concepts: 

Semantic Security,  

Probabilistic Encryption 

Goldwasser, Micali: 

2012 Turing Award 

Both Ph.D. advisees 

of  now CMU Professor 

Manuel Blum 

 

Semantic Security 

Given ciphertext and message length, adversary cannot  

determine any partial information about the message with  

success probability non-negligibly larger than when  

he only knows the message length (but not the ciphertext) 

Equivalent to following: 

• Let m0 and m1 be any two messages of equal length 

      (known to all). 

• Adversary is presented Enc(mb, PK) for random b 

• The adversary shouldn’t be able to find b with  

      probability non-negligibly better than 50-50 

Probabilistic Encryption 

Semantic security: Adversary shouldn’t be able to  

tell apart Enc(m0,PK) from Enc(m1,PK) 

But anyone (including the adversary) can compute  

Enc(m, PK) from m …. 

 

How can Enc(m, PK) hide m in above strong sense? 

Have many possible encryptions for each m 

Enc(m, PK) should be a randomized encryption of m 

Probabilistic Encryption 

Enc(m, PK) = random ciphertext from many  

     possible encryptions 

m0 

m1 

Adversary can’t  

tell apart  

random red point 

from  

random blue point 

Knowing SK 

allows recovery 

of m from Enc(m,PK) 

Goldwasser-Micali  

Public Key Encryption 

• Probabilistic encryption scheme 

• Semantically secure under certain 

“quadratic residuosity” intractability 

assumption (which is related to 

hardness of factoring) 

Key Generation 

1. Pick large primes p,q with p,q  3 (mod 4) 

2. Compute n = pq  

 

Public Key: n 

Secret Key: p,q 

Remark: Integers n of above from are called 

Blum integers (after CMU professor Manuel Blum) 

 

 
For a Blum integer n,  

 (n-1) is a quadratic non-residue 

which means x2  (n-1) (mod n) has no solutions   
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Encryption by Alice 

Scheme encrypts bits (for longer messages, break 

into bits and apply encryption to each bit separately) 

 

Enc(b, PK=n):   

1. Pick a random y  Zn
* 

2. Output (n-1)b y2 

Fact: Enc(b,n) is a quadratic residue mod n  

if  and only if  b=0 

Decryption by Bob 

Ciphertext c=Enc(b,n) is a quadratic residue mod n  

(i.e.,  x s.t x2  c (mod n))   if and only if b=0 

How can Bob (who has the secret key) determine 

if c is a quadratic residue mod n 

Bob’s advantage: He knows the factors p,q of n 

Exercise 1: c is a quadratic residue mod n if and only if  

              c is a quadratic residue modulo both p, q 

Exercise 2: c is quadratic residue mod prime p  

if and only if c(p-1)/2  1 (mod p) 

Eavesdropping by Eve 

What does the adversary see? 

 For encryption of bit 0,  

• a random quadratic residue mod n 

 For encryption of bit 1,  

• a random quadratic non-residue* mod n 

 * actually random quadratic non-residue c  

   such that n–c is a quadratic residue  (mod n) 

Enc(b,n) = (n-1)b y2  (mod n) for a random y  Zn
* 

Semantically secure? 

Given large n = pq with unknown factorization, 

it is believed that distinguishing random quadratic  

residues from random quadratic non-residues is hard 

Remark (nice exercise): Finding square roots of  

quadratic residues modulo n=pq enables finding 

the prime factors p,q of n  

This assumption implies semantic security  

of  the GM scheme 

The Elgamal Encryption Scheme 

• Another probabilistic public key 

encryption scheme 

• Based on hardness of Discrete Log 

(Diffie-Hellman assumption) 

 

The Elgamal Encryption Scheme 

• Public key: prime p, generator g of Zp
* , and  

       h = gx mod p  

• Private key: x   ( {1,2,…,p-1} ) 

Encryption: To encrypt m  Zp
* : 

• Pick y  {1,2,…,p-1} at random 

• Output  (gy  mod p , m hy  mod p) 
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Public key: prime p, generator g & h = gx mod p  

Private key:  x 

Encryption: To encrypt m  Zp
* : 

• Pick y  {1,2,…,p-1} at random 

• Output  (gy  mod p , m  hy  mod p) 

Decryption:  To decrypt (c1,c2) with private key x: 

•  Compute s = c1
x mod p   

 (this is the “shared secret” for this message) 

• Output  m = c2 s-1 mod p  

Theorems about breaking Elgamal 

If discrete log is easy, then easy to decrypt 

 

 

Assuming that gxy is hard to compute given g,gx,gy 

(CDH assumption), encryption is hard to invert. 

 

 

Assuming one can’t tell apart gxy  from a random 

element even when given g,gx,gy (DDH 

assumption), stronger “semantic security”.  

 

 

 

Operating on Ciphertexts 

For RSA, given ciphertexts encrypting m1 and m2,  

one can compute ciphertext encrypting the product  

m1 m2 (i.e., there is no need to decrypt,  

can directly multiply in the encrypted world) 

•  (m1m2)e  m1
e m2

e (mod n) 

Same holds for Elgamal scheme also 

• (gy , m1h
y ) * (gy’ , m2h

y’ ) = (gy+y’ , m1m2 h
y+y’ )  

For Goldwasser-Micali, one can compute  

encryption of b  b’ given ciphertexts for b and b’ 

(n-1)b y2 (n-1)b’ z2   (n-1)b  b’ (yz)2  (mod n) 

Partially malleable encryption 

These encryption schemes allow us to perform either  

addition or multiplication directly on ciphertexts.  

Rivest, Adleman, Dertouzos 1978 wondered: 

Is there an encryption scheme that would allow one to  

both add and multiply within the encrypted world? 

They foresaw that such a completely malleable encryption  

scheme allowing arbitrary computations on encrypted data 

 would have amazing applications  (eg. today think of  

delegating computation to the cloud without revealing your inputs) 

However, finding such a plausible scheme, which these  

days we call “fully homomorphic encryption” (FHE) 

remained open for over 30 years 

Craig Gentry in 2009 

gave the first candidate 

FHE scheme 

[Picture from his 

2014 MacArthur Fellowship 

announcement] 

Very high level & sketchy idea behind approach: 

• Encrypt by noisy encoding of message as per some  

  error-correcting code 

• Decrypt by removing noise (which requires a secret     

 nice representation of the code) 

• Add and multiply operations increase the noise by a 

   small amount 

•  When noise gets too large, “refresh” ciphertext 

Curious? : see this beautiful recent survey:  

https://eprint.iacr.org/2014/610 

Non-malleable encryption 

Sometimes, we actually don’t  want  ciphertexts  

to be malleable 

 • Eg. if you are submitting bidding D dollars in encrypted form, 

you don’t want someone to encrypt (D+1) dollars based on 

your bid 

Candidates of such non-malleable encryption schemes  

are also known (starting with Dolev, Dwork, Naor 1991) 
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Summary 

Cryptography is a field with a variety of 

questions and challenges, rich underlying theory, 

and profound applications. 

It hinges on structured hard computational problems 

Algebra and number theory form a  

fertile ground of  such problems 

One time Pad 

 

Diffie-Hellman Key Exchange 

 

Public Key Cryptography 

 

Modular arithmetic: 

Fundamental lemma of  powers 

     

RSA encryption  

 

Probabilistic encryption  

 

Goldwasser-Micali and Elgamal 

encyption schemes 

 

Study Guide 

Supplementary Material: 

Primality Testing 

How do we generate large primes? 

    Primes are reasonably dense (1/n of n-bit numbers 

of are prime).  

    If we can efficiently test if a number is prime, then 

we can generate primes fast (by selecting a few 

random numbers and checking those for primality). 

Answer: The Miller-Rabin primality test [1976,80] 

(Gary Miller is one of our professors.) 

These encryption schemes require  large prime numbers  

• eg. n = p q for RSA for large primes p,q 

 

Primality testing 

Given n, output if it is prime. 

Naïve method: Try all numbers 2,3,…,n 

If any of them divide n, output NO, 

else output YES. 

 

Problem: Huge runtime (think of n as a 500 

digit number…) 

 

Goal: To do this efficiently, with runtime 

scaling well with # digits of n. 

 

 

Primality testing 

Given n, output if it is prime. 

By Fermat’s little theorem, if n is prime, 

  an-1 n 1    for all a in [1, n-1]. 

 

So, here’s a possible test: 

•  pick random a  {1,2,…,n-1} 

•   Check if an-1 n 1, if so output prime, else output 

composite. 

 

1. Can repeat with say 50 random choices of a. 

2. If n is prime, algo. definitely outputs prime. 
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Primality testing 

1. pick random a  {1,2,…,n-1} ; if gcd(a,n)  1, 

output composite 

2.  If an-1 n 1, output prime, else output composite. 

Key to analysis: Number of “witnesses” a  Zn
* 

satisfying  an-1  1 mod n when n is not prime. 

Lemma: If just one witness exists, then in fact at least 
½ the a’s must be witnesses. 

Proof: Let w  Zn
* be such that wn-1  1 mod n . 

  Define B = { b | bn-1 n 1 }  (these are the “non-witnesses”) 

 Key observation: If b  B, then w b  B . 

    Injection from B to Bc. So |Bc|  |Zn
*|/2. 

Carmichael numbers 

Unfortunately, there are composite numbers n, called 

Carmichael numbers, such that  

   an-1 n 1 for all a  Zn
*  

 

In fact, there are infinitely many of them, smallest one 

being 561 = 3 * 11 * 17 

 

On these numbers, our Fermat’s Little Theorem based 

test  fails  

 

The Miller-Rabin test gives a correct version that 

works for all n. 

Idea behind Miller-Rabin test 

• Another way to prove n is composite is to 

exhibit a “fake square root”  modulo n 

• x such that x2  1 (mod n), but x mod n  1 

 

• Why does such an x prove that n is not 

prime? 

Miller-Rabin test 

      Say we write n-1 as d *2s  where d is odd.   

Consider the following sequence of numbers mod n: 

ad , a2d, a4d, …. ,  ad*2(s-1)
,    ad*2s

= an-1 n 1 

Each element is the square (mod n) of the previous one. 

 

  
      If n is prime, then at some point the sequence hits 1 

and stays there from then on. 

     What is the number right before the first 1 ?  

     If n is prime this MUST BE n-1.  (WHY?) 

ad , a2d, a4d. . . ad*2(s-1)
, ad*2s

= an-1 n 1 

 

  
 If n is prime, then at some point the sequence hits 1.  

The number before the first 1 must be n-1 

    pick a random a and generate the above sequence.   

     If the sequence does not hit 1, then n is composite.   

     If there’s an element before the first 1 and it’s not  n-1, 

then n is composite. 

     Otherwise n is “probably prime”. 

Theorem (we won’t prove this):  

If  n is composite, at least ½ the a’s 

 “catch” its compositeness via the above test. 

Miller-Rabin Analysis 

     If n is composite, then with a random a, the Miller-

Rabin algorithm says “composite” with probability 

at least  ½  (in fact at least ¾) 

     So if we run the test  50 times and it never says 

“composite” then n is prime with “probability” 1-2-50 

    In other words it’s more likely that you’ll win the 

lottery three days in a row than that this is giving a 

wrong answer. 
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But if 2-50 keeps you awake… 

[Agrawal-Kayal-Saxena]  
(in 2002, when last two authors were undergraduates) 

Deterministic primality test that is guaranteed 

 to give the correct answer with 100% certainty.  

Based on a generalization of  Fermat’s Little Theorem: 

If  n is prime, and then for all a  {1,2,…,n-1} 

  (X + a)n   Xn  + a (mod n) 


