
1

CRYPTOGRAPHY

Great Theoretical Ideas In Computer Science

Venkat
Guruswami

CS 15-251 Fall 2014

Lecture 18 Oct 28, 2014 Carnegie Mellon University

Cryptography: A land of

counterintuitive possibilities

• Alice and Bob can agree on a secret key over a

public channel

• Alice can convince Bob she knows something –

say proof of twin prime conjecture – with Bob

learning nothing about the proof

• Anyone can publicly send an encrypted

message to Bob that only he can decrypt,

without any pre-agreed upon secret

Cryptography: A land of

counterintuitive possibilities

• One can delegate computation of any function

on encrypted data without revealing anything

about the inputs

• Millionaires' Problem: Alice and Bob can find out

who has more money without revealing anything

else about their worth

• One can learn a piece of data from a database

without the database learning anything about

your desired query

• ….

Private/Symmetric Key Encryption

One Time Pads

Add (XOR) a secret key, shared between

sender &receiver, to the message.

One Time Pads

Gives perfect security!

For random shared key,

leaks no information about message

2

But reuse is bad

XOR =

Agreeing on a secret

One time pads rely on having a shared secret!

Need a separate secret for each pair of

communicating parties.

Does this require private communication to agree on

the secret?

Can Alice and Bob agree on a secret over a public

conversation?

Diffie-Hellman Key Exchange

Alice: Picks prime p, and a generator g in Zp*

 Picks random number a  {1,2,…,p-1}

 Sends over p, g, ga (mod p) to Bob

Bob: Picks random b  {1,2,…,p-1} and sends

over gb (mod p) to Alice

Now both can compute the shared “secret”

gab (mod p)

It’s good there are hard problems!

Alice: Picks prime p, and a value g in Zp*

 Picks random a in {1,2,…,p-1}

 Sends over p, g, ga (mod p)

Bob: Picks random b in {1,2,…,p-1}, and

 sends over gb (mod p)

Secret: gab (mod p)

Given ga , a is uniquely

determined.

So why is this secure?

Crypto needs hard problems to keep bad guys at bay (privacy)

But good guys should be able to achieve desired functionality

This delicate balance is the challenge and beauty of crypto

Discrete Log intractability assumption:

 Given input a large prime p, g in Zp
*, and x=ga,

 it is hard to compute a (= logg x)

Hard algebraic problems

Algebra (groups, number theory)

is a great source of problems meeting

these demands.

Hardness to keep bad guys at bay (privacy)

Easiness for good guys to operate (functionality)

What about Eve?

 If Eve’s just listening in,

 she sees p, g, ga, gb

To say Eve learns nothing about the shared secret (eg. its first bit),

need gab (mod p) to be look like a random element of Zp
*

(This is Decisional Diffie-Hellman (DDH) assumption;

 not valid for Zp* but there are other candidate cyclic groups)

Alice: Picks prime p, and a value g in Zp*

 Picks random a in {1,2,…,p-1}

 Sends over p, g, ga (mod p)

Bob: Picks random b in {1,2,…,p-1}, and

 sends over gb (mod p)

Secret: gab (mod p)

Diffie-Hellman assumption

computing gab (mod p) from

p, g, ga, gb is hard

3

Why these assumptions?

Discrete-Log: Given p, g, ga (mod p), compute a

Finding discrete logarithms seems hard, but proving

the hardness seems even harder!

Proving intractability of Discrete-Log is harder than

the P vs. NP problem

Complexity-theoretic cryptography relies on

assumptions on the presumed intractability of some

(classes) of problems.

• Information-theoretic crypto: no hardness assumptions

(eg. one time pad)

Diffie Hellman key exchange requires both parties

to exchange information to share a secret

Can we get rid of this assumption?

Can someone who I have never spoken to

send me a message over a public channel

that is only intelligible to me

Public Key Encryption

Public Key Encryption

[Diffie-Hellman]

Goal: Enable Alice to send encrypted message

 to Bob without their sharing any secret

Anyone should be able to send Bob a

message in encrypted form.

Only Bob should be able to decrypt.

Anyone can send Bob a message in encrypted form.

Only Bob should be able to decrypt.

Bob has to be “special” somehow…

Bob holds a special “secret key” that only he

knows and that enables him to decrypt

• (Hopefully) decryption intractable without

 knowledge of this secret.

• Physical analogy: key to a locked box

HOW ???

Bob holds a “secret key” (known only to him) that

enables him to decrypt

• Physical analogy: key to a locked box

Encryption (Physical analogy):

• Place message in a locked box with a “lock”

 that only Bob’s key can open.

How to get hold of such lock(s)?

Bob “gives them” to everyone!!

Bob has a “public key”, known to everyone,

which can be used for encryption.

4

Public Key Encryption

Bob generates a (PK,SK) pair.

• Publishes PK.

• Holds on to SK as a secret

Encryption of message m: Enc(m, PK)

Pair of fns. (Enc,Dec) for encryption & decryption

• Anyone can encrypt (as PK is public)

Decryption of ciphertext c: Dec(c, SK)

• Bob knows SK so can decrypt.

Of course, must have Dec(Enc(m,PK),SK) = m

Take 1

Alice, who has never spoken to Bob, wants

to send him message m in encrypted form Enc(m)

Recovering m from Enc(m) should be a hard problem

How about Enc(m) = gm mod p

(where g,p are public knowledge)

Discrete log hardness privacy from eavesdropper

But how will Bob figure out m ??

• He has to solve the same discrete log problem!

• Seems tricky to give him an egde

The RSA Cryptosystem

Modular Arithmetic

Interlude #3 Fundamental lemmas mod n:

Suppose x  y (mod n) and a  b (mod n). Then

1) x + a  y + b (mod n)

2) x * a  y * b (mod n)

3) x - a  y – b (mod n)

So instead of doing +,*,- and taking remainders, we can

first take remainders and then do arithmetic.

Modular arithmetic
Defn: For integers a,b, and positive integer n,

 a  b (mod n) means

 (a-b) is divisible by n, or equivalently

 a mod n = b mod n (x mod n is remainder of x when

 divided by n, and belongs to {0,1,…,n-1})

Fundamental lemma of powers?

If x  y (mod n)

Then ax  ay (mod n) ?

NO!

2  5 (mod 3) , but it is

not the case that:

22  2
5 (mod 3)

(Correct) rule for powers.

Equivalently, for a  Zn
*, ax  ax mod (n) (mod n)

If a  Zn
* and x  y (mod (n))

then ax  ay (mod n)

Euler’s theorem: for a  Zn
*, a(n)  1 (mod n)

If x = q (n)+r,

Then ax = aq (n) ar  ar (mod n)

5

Example…

5121242653 (mod 11)

121242653 (mod 10) = 3

53 (mod 11) = 125 mod 11 = 4

Why did we

take mod 10?

343281327847324 mod 39

Step 1: reduce the base mod 39

Step 2: reduce the exponent mod Φ(39) = 24

Step 3: use repeated squaring to compute 34,

 taking mods at each step

NB: you should check that gcd(343281,39)=1 to use lemma of powers

RSA prepwork I: computing in Zn
*

Computing in Zn
*

• Multiplication: easy, just multiply mod n

• Exponentiation: To compute am, do

 “repeated squaring”

  log2 m multiplies mod n

• Inverses: To compute a-1

• use extended Euclid algorithm to compute

 r,s such that r a + s n = 1.

• Then a-1 = r mod n.

How do you compute…

58

First idea:

5 52 53 54 55 56 57 58

= 5*5 = 52*5

using few multiplications?

How do you compute…

58

Better idea:

5 52 54 58

= 5*5 = 52*52 = 54*54

Used only 3 mults

instead of 7 !!!

Repeated squaring calculates

a2k

in k multiply operations

compare with

(2k – 1) multiply

operations

used by the naïve method

6

How do you compute…

513

516

too high! what now?

assume no divisions allowed…

Use repeated squaring again?

5 52 54 58

How do you compute…

513

Use repeated squaring again?

5 52 54 58

Note that 13 = 8+4+1

So a13 = a8 * a4 * a1

Two more multiplies!

1310 = (1101)2

To compute am

Suppose 2k ≤ m < 2k+1

a a2 a4 a8

This takes k multiplies

Now write m as a sum of distinct powers of 2

am = a2k
 * a2i1

 * … * a2it

a2k
. . .

say, m = 2k + 2i1 + 2i2 … + 2it

at most k more multiplies

Hence, we can compute

am

while performing at most

2 log2 m multiplies

How do you compute…

513 (mod 11)

First idea: Compute 513 using 5 multiplies

5 52 54 58 512 513

= 58*54 = 512*5

then take the answer mod 11

= 1 220 703 125

1220703125 (mod 11) = 4

How do you compute…

513 (mod 11)

Better idea: keep reducing the answer mod 11

5 52 54 58 512 513

´11 3 ´11 9
´11 81 ´11 36 ´11 15

´11 4 ´11 3 ´11 4

 25

7

Hence, we can compute

am (mod n)

while performing at most

2 log2 m multiplies

where each time we multiply

together numbers

with log2 n + 1 bits

Z15
* = {1 ≤ x  15 | gcd(x,15) = 1}

= {1,2,4,7,8,11,13,14}

* 1 2 4 7 8 11 13 14

1 1 2 4 7 8 11 13 14

2 2 4 8 14 1 7 11 13

4 4 8 1 13 2 14 7 11

7 7 14 13 4 11 2 1 8

8 8 1 2 11 4 13 14 7

11 11 7 14 2 13 1 8 4

13 13 11 7 1 14 8 4 2

14 14 13 11 8 7 4 2 1

(15) = 8

Theorem: If p,q are distinct primes then

 Φ(pq) = (p-1)(q-1)

Proof: We need to count how many numbers in

 {1,2,3,…,pq-1} are relatively prime to pq.

Let us count those that are not, and subtract from (pq-1).

These are

 (i) the multiples of p: p, 2p, 3p, …, (q-1)p

 (ii) the multiples of q: q, 2q, 3q, …, (p-1)q

Total = q-1 + p-1=p+q-2

So Φ(pq) = pq-1 – (p+q-2) = pq-p-q+1 = (p-1) (q-1)

RSA prepwork
RSA Cryptosystem

Rivest, Shamir, Adleman:

2002 A.M. Turing Award

Pick secret, random large

primes: p,q

Multiply n = p*q

“Publish”: n

(n) = (p) (q) = (p-1)*(q-1)

Pick random e  Z*
(n)

“Publish”: e

Compute d = inverse of e in Z*
(n)

Hence, ed  1 (mod (n))

“Private/secret Key”: d

The RSA Cryptosystem

n,e is my

public key.

Use it to

send me a

message.

p,q random primes

e random  Z*
(n)

n = pq

e*d 1 (mod (n))

8

PK: (n, e)

p,q prime, e random  Z*
(n)

n = p*q

e*d = 1 [mod (n)]

message
m  Zn

*

Enc(m,PK)=
me mod n

(me)d mod n =
m

SK: d

RSA: Simple example

How hard is breaking RSA?

If we can factor products of two large primes,

can we crack RSA?

If we can compute Φ(n) from n, can we crack RSA?

How about the other way? Does cracking RSA mean

we must be able do one of these two?

We don’t know this…

What does (breach of) security

mean?

Certainly complete recovery of m by bad guys

But also learning partial information about m

• eg. value of m (say salary info) up to +/- $1000

How to define security to capture the requirement

 that no information about m is leaked?

Information-theoretic

 perfect secrecy

For the one time pad solution, the eavesdroppers

have no clue about m, regardless of computing power

• The distribution of ciphertexts does not

 depend on m

• Say adversary knows either m0 or m1

 was sent, and sees the ciphertext.

• Still can’t tell which of m0 or m1 was sent

 better than 50-50 guessing

• Thus seeing the ciphertext has no bearing

 on adversaries abilities to learn m

What about computational security

in Public Key Encryption?

9

Great Definitions & Solution Concepts:

Semantic Security,

Probabilistic Encryption

Goldwasser, Micali:

2012 Turing Award

Both Ph.D. advisees

of now CMU Professor

Manuel Blum

Semantic Security

Given ciphertext and message length, adversary cannot

determine any partial information about the message with

success probability non-negligibly larger than when

he only knows the message length (but not the ciphertext)

Equivalent to following:

• Let m0 and m1 be any two messages of equal length

 (known to all).

• Adversary is presented Enc(mb, PK) for random b

• The adversary shouldn’t be able to find b with

 probability non-negligibly better than 50-50

Probabilistic Encryption

Semantic security: Adversary shouldn’t be able to

tell apart Enc(m0,PK) from Enc(m1,PK)

But anyone (including the adversary) can compute

Enc(m, PK) from m ….

How can Enc(m, PK) hide m in above strong sense?

Have many possible encryptions for each m

Enc(m, PK) should be a randomized encryption of m

Probabilistic Encryption

Enc(m, PK) = random ciphertext from many

 possible encryptions

m0

m1

Adversary can’t

tell apart

random red point

from

random blue point

Knowing SK

allows recovery

of m from Enc(m,PK)

Goldwasser-Micali

Public Key Encryption

• Probabilistic encryption scheme

• Semantically secure under certain

“quadratic residuosity” intractability

assumption (which is related to

hardness of factoring)

Key Generation

1. Pick large primes p,q with p,q  3 (mod 4)

2. Compute n = pq

Public Key: n

Secret Key: p,q

Remark: Integers n of above from are called

Blum integers (after CMU professor Manuel Blum)

For a Blum integer n,

 (n-1) is a quadratic non-residue

which means x2  (n-1) (mod n) has no solutions

10

Encryption by Alice

Scheme encrypts bits (for longer messages, break

into bits and apply encryption to each bit separately)

Enc(b, PK=n):

1. Pick a random y  Zn
*

2. Output (n-1)b y2

Fact: Enc(b,n) is a quadratic residue mod n

if and only if b=0

Decryption by Bob

Ciphertext c=Enc(b,n) is a quadratic residue mod n

(i.e.,  x s.t x2  c (mod n)) if and only if b=0

How can Bob (who has the secret key) determine

if c is a quadratic residue mod n

Bob’s advantage: He knows the factors p,q of n

Exercise 1: c is a quadratic residue mod n if and only if

 c is a quadratic residue modulo both p, q

Exercise 2: c is quadratic residue mod prime p

if and only if c(p-1)/2  1 (mod p)

Eavesdropping by Eve

What does the adversary see?

 For encryption of bit 0,

• a random quadratic residue mod n

 For encryption of bit 1,

• a random quadratic non-residue* mod n

 * actually random quadratic non-residue c

 such that n–c is a quadratic residue (mod n)

Enc(b,n) = (n-1)b y2 (mod n) for a random y  Zn
*

Semantically secure?

Given large n = pq with unknown factorization,

it is believed that distinguishing random quadratic

residues from random quadratic non-residues is hard

Remark (nice exercise): Finding square roots of

quadratic residues modulo n=pq enables finding

the prime factors p,q of n

This assumption implies semantic security

of the GM scheme

The Elgamal Encryption Scheme

• Another probabilistic public key

encryption scheme

• Based on hardness of Discrete Log

(Diffie-Hellman assumption)

The Elgamal Encryption Scheme

• Public key: prime p, generator g of Zp
* , and

 h = gx mod p

• Private key: x ( {1,2,…,p-1})

Encryption: To encrypt m  Zp
* :

• Pick y  {1,2,…,p-1} at random

• Output (gy mod p , m hy mod p)

11

Public key: prime p, generator g & h = gx mod p

Private key: x

Encryption: To encrypt m  Zp
* :

• Pick y  {1,2,…,p-1} at random

• Output (gy mod p , m hy mod p)

Decryption: To decrypt (c1,c2) with private key x:

• Compute s = c1
x mod p

 (this is the “shared secret” for this message)

• Output m = c2 s-1 mod p

Theorems about breaking Elgamal

If discrete log is easy, then easy to decrypt

Assuming that gxy is hard to compute given g,gx,gy

(CDH assumption), encryption is hard to invert.

Assuming one can’t tell apart gxy from a random

element even when given g,gx,gy (DDH

assumption), stronger “semantic security”.

Operating on Ciphertexts

For RSA, given ciphertexts encrypting m1 and m2,

one can compute ciphertext encrypting the product

m1 m2 (i.e., there is no need to decrypt,

can directly multiply in the encrypted world)

• (m1m2)e  m1
e m2

e (mod n)

Same holds for Elgamal scheme also

• (gy , m1h
y) * (gy’ , m2h

y’) = (gy+y’ , m1m2 h
y+y’)

For Goldwasser-Micali, one can compute

encryption of b  b’ given ciphertexts for b and b’

(n-1)b y2 (n-1)b’ z2  (n-1)b  b’ (yz)2 (mod n)

Partially malleable encryption

These encryption schemes allow us to perform either

addition or multiplication directly on ciphertexts.

Rivest, Adleman, Dertouzos 1978 wondered:

Is there an encryption scheme that would allow one to

both add and multiply within the encrypted world?

They foresaw that such a completely malleable encryption

scheme allowing arbitrary computations on encrypted data

 would have amazing applications (eg. today think of

delegating computation to the cloud without revealing your inputs)

However, finding such a plausible scheme, which these

days we call “fully homomorphic encryption” (FHE)

remained open for over 30 years

Craig Gentry in 2009

gave the first candidate

FHE scheme

[Picture from his

2014 MacArthur Fellowship

announcement]

Very high level & sketchy idea behind approach:

• Encrypt by noisy encoding of message as per some

 error-correcting code

• Decrypt by removing noise (which requires a secret

 nice representation of the code)

• Add and multiply operations increase the noise by a

 small amount

• When noise gets too large, “refresh” ciphertext

Curious? : see this beautiful recent survey:

https://eprint.iacr.org/2014/610

Non-malleable encryption

Sometimes, we actually don’t want ciphertexts

to be malleable

 • Eg. if you are submitting bidding D dollars in encrypted form,

you don’t want someone to encrypt (D+1) dollars based on

your bid

Candidates of such non-malleable encryption schemes

are also known (starting with Dolev, Dwork, Naor 1991)

12

Summary

Cryptography is a field with a variety of

questions and challenges, rich underlying theory,

and profound applications.

It hinges on structured hard computational problems

Algebra and number theory form a

fertile ground of such problems

One time Pad

Diffie-Hellman Key Exchange

Public Key Cryptography

Modular arithmetic:

Fundamental lemma of powers

RSA encryption

Probabilistic encryption

Goldwasser-Micali and Elgamal

encyption schemes

Study Guide

Supplementary Material:

Primality Testing

How do we generate large primes?

 Primes are reasonably dense (1/n of n-bit numbers

of are prime).

  If we can efficiently test if a number is prime, then

we can generate primes fast (by selecting a few

random numbers and checking those for primality).

Answer: The Miller-Rabin primality test [1976,80]

(Gary Miller is one of our professors.)

These encryption schemes require large prime numbers

• eg. n = p q for RSA for large primes p,q

Primality testing

Given n, output if it is prime.

Naïve method: Try all numbers 2,3,…,n

If any of them divide n, output NO,

else output YES.

Problem: Huge runtime (think of n as a 500

digit number…)

Goal: To do this efficiently, with runtime

scaling well with # digits of n.

Primality testing

Given n, output if it is prime.

By Fermat’s little theorem, if n is prime,

 an-1 n 1 for all a in [1, n-1].

So, here’s a possible test:

• pick random a  {1,2,…,n-1}

• Check if an-1 n 1, if so output prime, else output

composite.

1. Can repeat with say 50 random choices of a.

2. If n is prime, algo. definitely outputs prime.

13

Primality testing

1. pick random a  {1,2,…,n-1} ; if gcd(a,n)  1,

output composite

2. If an-1 n 1, output prime, else output composite.

Key to analysis: Number of “witnesses” a  Zn
*

satisfying an-1  1 mod n when n is not prime.

Lemma: If just one witness exists, then in fact at least
½ the a’s must be witnesses.

Proof: Let w  Zn
* be such that wn-1  1 mod n .

 Define B = { b | bn-1 n 1 } (these are the “non-witnesses”)

 Key observation: If b  B, then w b  B .

 Injection from B to Bc. So |Bc|  |Zn
*|/2.

Carmichael numbers

Unfortunately, there are composite numbers n, called

Carmichael numbers, such that

 an-1 n 1 for all a  Zn
*

In fact, there are infinitely many of them, smallest one

being 561 = 3 * 11 * 17

On these numbers, our Fermat’s Little Theorem based

test fails 

The Miller-Rabin test gives a correct version that

works for all n.

Idea behind Miller-Rabin test

• Another way to prove n is composite is to

exhibit a “fake square root” modulo n

• x such that x2  1 (mod n), but x mod n  1

• Why does such an x prove that n is not

prime?

Miller-Rabin test

 Say we write n-1 as d *2s where d is odd.

Consider the following sequence of numbers mod n:

ad , a2d, a4d, …. , ad*2(s-1)
, ad*2s

= an-1 n 1

Each element is the square (mod n) of the previous one.

 If n is prime, then at some point the sequence hits 1

and stays there from then on.

 What is the number right before the first 1 ?

 If n is prime this MUST BE n-1. (WHY?)

ad , a2d, a4d. . . ad*2(s-1)
, ad*2s

= an-1 n 1

 If n is prime, then at some point the sequence hits 1.

The number before the first 1 must be n-1

 pick a random a and generate the above sequence.

 If the sequence does not hit 1, then n is composite.

 If there’s an element before the first 1 and it’s not n-1,

then n is composite.

 Otherwise n is “probably prime”.

Theorem (we won’t prove this):

If n is composite, at least ½ the a’s

 “catch” its compositeness via the above test.

Miller-Rabin Analysis

 If n is composite, then with a random a, the Miller-

Rabin algorithm says “composite” with probability

at least ½ (in fact at least ¾)

 So if we run the test 50 times and it never says

“composite” then n is prime with “probability” 1-2-50

 In other words it’s more likely that you’ll win the

lottery three days in a row than that this is giving a

wrong answer.

14

But if 2-50 keeps you awake…

[Agrawal-Kayal-Saxena]
(in 2002, when last two authors were undergraduates)

Deterministic primality test that is guaranteed

 to give the correct answer with 100% certainty.

Based on a generalization of Fermat’s Little Theorem:

If n is prime, and then for all a  {1,2,…,n-1}

 (X + a)n  Xn + a (mod n)

