
1

15-251: Great Theoretical Ideas in Computer Science

Error Correction

Lecture 17

October 23, 2014

Polynomial Interpolation

Let arbitrary pairs (a1,b1), (a2,b2), …, (ad+1,bd+1)

from a field F be given (with all ai‟s distinct).

Then there always exists a polynomial P(x) of

degree  d with P(ai) = bi for all i.

Theorem:

Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

b1

b2

b3

···

bd

bd+1

Want P(x)
(with degree ≤ d)

such that P(ai) = bi ∀i.

Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

1

0

0

···

0

0

Can we do this special case?

Lagrange Interpolation

a1

a2

a3

···

ad

ad+1

1

0

0

···

0

0

Idea #2:

Denominator

is a nonzero

field element

Numerator

is a deg. d

polynomial

Call this the selector polynomial for a1.

a1

a2

a3

···

ad

ad+1

0

1

0

···

0

0

What about above data?

2

a1

a2

a3

···

ad

ad+1

0

0

0

···

0

1

And for this data,

Polynomial Interpolation

a1

a2

a3

···

ad

ad+1

b1

b2

b3

···

bd

bd+1

The Chinese Remainder Theorem had a

very similar proof

Not a coincidence:

algebraically, integers & polynomials
share many common properties

Lagrange interpolation is the exact analog of
Chinese Remainder Theorem for polynomials.

Let mi = N/ni

x = a1 T1 + a2 T2 + ... + ak Tk

i‟th “selector” number: Ti = (mi
-1 mod ni) mi

Recall: Interpolation

Let pairs (a1,b1), (a2,b2), …, (ad+1,bd+1)

from a field F be given (with all ai‟s distinct).

Theorem:

 There is a unique degree d polynomial P(x)

 satisfying P(ai) = bi for all i = 1…d+1.

A linear algebra view

Let p(x) = p0 + p1x + p2 x
2 + … + pd x

d

Need to find the coefficient vector (p0,p1,…,pd)

p(a) = p0 + p1 a + …+ pd a
d

 = 1  p0 + a  p1 + a2 p2 + … + ad pd

Thus we need to solve:

3

Lagrange interpolation

Thus can recover coefficient vector as

The columns of M-1 are given by the coefficients

of the various “selector” polynomials we constructed

in Lagrange interpolation.

Representing Polynomials

Let P(x)∈F[x] be a degree-d polynomial.

Representing P(x) using d+1 field elements:

1.

2.

List the d+1 coefficients.

Give P‟s value at d+1 different elements.

Rep 1 to Rep 2:

Rep 2 to Rep 1:

Evaluate at d+1 elements

Lagrange Interpolation

Application of Fields/Polynomials

(and linear algebra):

Error-correcting codes

Sending messages on a noisy channel

Alice Bob

“ bit.ly/vrxUBN ”

The channel may corrupt up to k symbols.

How can Alice still get the message across?

Sending messages on a noisy channel

The channel may corrupt up to k symbols.

How can Alice still get the message across?

Let‟s say messages are sequences from

vrxUBN ↔ 118 114 120 85 66 78

vrxUBN ↔ 118 114 104 85 35 78

noisy channel

Sending messages on a noisy channel

How to correct the errors?

How to even detect that there are errors?

Let‟s say messages are sequences from

vrxUBN ↔ 118 114 120 85 66 78

vrxUBN ↔ 118 114 104 85 35 78

noisy channel

4

Simpler case: “Erasures”

What can you do to handle up to k erasures?

118 114 120 85 66 78

118 114 ?? 85 ?? 78

erasure channel

Repetition code

118 114 120 85 66 78

erasure channel

Have Alice repeat each symbol k+1 times.

118 118 118 114 114 114 120 120 120 85 85 85 66 66 66 78 78 78

becomes

118 118 118 ?? ?? 114 120 120 120 85 85 85 66 66 66 78 78 78

If at most k erasures, Bob can figure out each symbol.

Repetition code – noisy channel

118 114 120 85 66 78

noisy channel

Have Alice repeat each symbol 2k+1 times.

118 118 118 114 114 114 120 120 120 85 85 85 66 66 66 78 78 78

becomes

118 118 118 114 223 114 120 120 120 85 85 85 66 66 66 78 78 78

At most k corruptions: Bob can take majority of each block.

This is pretty wasteful!

To send message of d+1 symbols and

guard against k erasures, we had

to send (d+1)(k+1) total symbols.

Can we do better?

This is pretty wasteful!

To send even 1 message symbol with

k erasures, need to send k+1 total symbols.

To send message of d+1 symbols and

guard against k erasures, we had

to send (d+1)(k+1) total symbols.

Maybe for d+1 message symbols with k erasures,

d+k+1 total symbols can suffice??

Enter polynomials

Say Alice‟s message is d+1 elements from

118 114 120 85 66 78

Alice thinks of it as the coefficients of a

degree-d polynomial P(x) ∈ [x]

P(x) = 118x5 + 114x4 + 120x3 + 85x2 + 66x + 78

Now trying to send the degree-d polynomial P(x).

5

Send it in the Values Representation!

Alice sends P(x)‟s values on d+k+1 inputs:

P(1), P(2), P(3), …, P(d+k+1)

P(x) = 118x5 + 114x4 + 120x3 + 85x2 + 66x + 78

This is called the Reed–Solomon encoding.

Send it in the Values Representation!

Alice sends P(x)‟s values on d+k+1 inputs:

P(1), P(2), P(3), …, P(d+k+1)

P(x) = 118x5 + 114x4 + 120x3 + 85x2 + 66x + 78

If there are at most k erasures, then

Bob still knows P‟s value on d+1 points.

Bob recovers P(x) using Lagrange Interpolation!

Example

PDF417 codes
= 2-d Reed-Solomon

codes

Maxicodes
= “UPS codes”
= another 2-d

Reed-Solomon codes

Another everyday use:

Reed−Solomon codes are used a lot in practice!

CD/DVDs, hard discs,

satellite communication, …

What aboout corruptions/errors

To even communicate 1 symbol while

enabling recovery from k errors,

need to send 2k+1 total symbols.

To send message of d+1 symbols

and enable correction from up to k errors,

repetition code has to send (d+1)(2k+1) total symbols.

Maybe for d+1 message symbols with k errors,

d+2k+1 total symbols can suffice??

k k

Want to send a polynomial of degree-d

subject to at most k corruptions.

Suppose we try the same idea

• Evaluate P(X) at d+1+k points

• Send P(0), P(1), P(2), …, P(d+k)

At least d+1 of these values will be unchanged

First simpler problem: Error detection

6

P(X) = 2X2 + 1, and k = 1.

So I sent P(0)=1, P(1)=3, P(2)=9, P(3)=19

Corrupted email says (1, 4, 9, 19)

Choosing (1, 4, 9) will give us Q(X) =

Example

X2 + 2X + 1

We can now detect (up to k) errors

Evaluate P(X) at d+1+k points

Send P(0), P(1), P(2), …, P(d+k)

At least d+1 of these values will be correct

Say P(0), P‟(1) , P(2), P(3), P‟(4), …, P(d+k)

Using these d+1 correct values will give P(X)

Using any of the incorrect values will

give something else

Quick way of detecting errors

Interpolate first d+1 points to get Q(X)

Check that all other received values are

consistent with this polynomial Q(X)

If all values consistent, no errors.

In that case, we know Q(X) = P(X)

else there were errors…

How good is our encoding?

Naïve Repetition:

To send d+1 numbers with error detection,

sent (d+1)(k+1) numbers

Polynomial Coding:

To send d+1 numbers with error detection,

sent (d+k+1) numbers

How about error correction?

To send d+1 numbers in such a way

that we can correct up to k errors,

need to send d+1+2k numbers.

requires more work

Similar encoding scheme

Evaluate degree-d P(x) at d+1+2k points

Send P(0), P(1), P(2), …, P(d+2k)

At least d+1+k of these values will be correct

Say P(0), P(1) , P(2), P(3), P(4), …, P(d+2k)

Trouble: How do we know which are correct?

7

Theorem: P(X) is the unique degree-d polynomial

that agrees with the received data on

at least d+1+k points

And if a different degree-d polynomial R(X) did so,

R(X) and P(X) would have to agree with each other on

d+1 points, and hence be the same.

Clearly, the original polynomial P(X)

agrees with data on d+1+k points

(since at most k errors, out of total d+1+2k points)

So any such R(X) = P(X)

Brute-force Algorithm to find P(X):

Interpolate each subset of (d+1) points

Check if the resulting polynomial agrees

with received data on d+1+k pts

Takes too much time…

Theorem: P(X) is the unique degree-d polynomial

that agrees with the received data on

at least d+1+k points

A fast (cubic runtime) algorithm to decode was given

by [Peterson, 1960]

Later improvements by Berlekamp and Massey

gave practical algorithms

Aside: Recent research (incl. some of my own)

 has given algorithms to correct even more than k

errors (in a meaningful model)

We will now describe the Welch-Berlekamp

algorithm to recover the original polynomial

when there are k errors

Reed-Solomon codes

 Message = (m0,m1,…,md)  Fd+1

 (F =Zp)

 Polynomial curve Y = P(X) = m0+m1X+…+mdXd

 Encoding = eval. at n= d+2k+1 distinct ai  F

Y

X

Two curves differ in

> 2k positions

Message uniquely

identifiable for up to

k errors

 Efficient recovery?

(P(a1), P(a2) … P(an))

a1 a2 a3

 Given n = d+2k+1 points (ai,yi) where

 received value yi  P(ai) for at most k

points.

 If we locate positions of errors, problem

then easy by interpolation on correct data

Error-correction approach Locating the errors

Y

X

Noisy points mess up

curve-fitting/interpolation

Interpolate more general

curve through all n points

Here‟s such a curve.

(Y-P(X)) (X-a2) (X-a5) = 0

Y = P(X)

Here E(X) := (X-a2) (X-a5) is the error locator polynomial, with

roots at all error locations

a1
a2

a4
a5

Of course, we don’t know E(X)

(that‟s the whole problem!)

8

Developing the algorithm

Let Err be subset of k erroneous locations, and

define error locator polynomial E(X) = i  Err (X – ai)

Let N(X) = E(X) P(X); degree(N) = d + k.

• degree(E) = k

We have E(ai) yi = E(ai) P(ai) for i=1,2,…,n

So E(ai) yi – N(ai) = 0 for all points (ai, yi)

Can we use above to find polynomials E(X) and N(X)

(and hence also P(X) = N(X)/E(X))?

Finding N and E

 E(ai) yi – N(ai) = 0 for all points (ai, yi)

Finding E(X) and N(X) is same as finding the unknowns

b0, b1, …, bk-1, c0, …, cd+k

• There are k +(d+k+1) = d+2k+1 = n unknowns

• Also n linear equations E(ai) yi – N(ai) = 0

 in these n unknowns (why are they linear?)

• E(X) = Xk + bk-1X
k-1 + … + b0 =

• N(X) = cd+k X
d+k + … + c1 X + c0

So we can find E(X) and N(X) by solving this

linear system and then output N(X)/E(X)

Spurious solutions?
We know coefficients of E(X) and N(X)=E(X)P(X)

are a solution, but what if there are other solutions?

Lemma: If E1(X) and N1(X) are a different solution,

to E1(ai) yi – N1(ai) = 0 with deg(E1)  k, deg(N1)  d+k,

 then N1(X)/E1(X) = P(X)

Proof: Define R(X)= E1(X)P(X)–N1(X)

So R(X) has at least d+k+1 roots.  R(X) =0 

degree(R)  d+k When P(ai)= yi,

 R(ai) =E1(ai)P(ai)–N1(ai) = E1(ai)yi –N1(ai) = 0

Thus every solution (E1,N1) to the linear system

yields the same P(X) as the ratio!

Sending messages on a noisy channel

Alice Bob

 Message: d+1 symbols from

To guard against k corruptions,

treat message as coeffs of poly P,

send P(1), P(2), …, P(d+2k+1)

Reed–Solomon:

Um, what if

d+2k+1 > 257?

Sending messages on a noisy channel

Alice Bob

 Message: d+1 symbols from

To guard against k corruptions,

treat message as coeffs of poly P,

send P(1), P(2), …, P(d+2k+1)

Reed–Solomon:

Um, what if

d+2k+1 > 257?

What if the noisy

channel corrupts bits,

not bytes?

(Can we have fewer

redundant bits?)

Sending messages on a noisy channel

Alice wants to send an n-bit message to Bob.

The channel may flip up to k bits.

How can Alice get the message across?

9

Sending messages on a noisy channel

Alice wants to send an (n−1)-bit message to Bob.

The channel may flip up to 1 bit.

How can Alice get the message across?

Q1: How can Bob detect if there‟s been a bit-flip?

Parity-check solution

Alice tacks on a bit, equal to

the parity of the message‟s n−1 bits.

Alice‟s n-bit „encoding‟ always has

an even number of 1‟s.

Bob can detect if the channel flips a bit:

if he receives a string with an odd # of 1‟s.

1-bit error-detection for 2n−1 messages

by sending n bits: optimal! (simple exercise)

Linear Algebra perspective

G: an n×(n−1)

„generator‟ matrix
 Alice‟s

message x∈

=

Bob

receives

Linear Algebra perspective

Let C be the set of strings Alice may transmit.

C is the span of the columns of G.

C is a subgroup of

[In linear algebra terms, an

(n−1)-dimensional subspace of the vector space]

Linear Algebra perspective

Bob

receives

H: a 1×n

„parity check‟

matrix

=
?

0

Bob checks this

to detect if no errors

Solves 1-bit error detection, but not correction

 If Bob sees z = (1, 0, 0, 0, 0, 0, 0),

did Alice send y = (0, 0, 0, 0, 0, 0, 0),

 or y = (1, 1, 0, 0, 0, 0, 0),

 or y = (1, 0, 1, 0, 0, 0, 0),

 or… ?

10

The Hamming(7,4) Code

Alice communicates 4-bit messages (16 possible messages)

by transmitting 7 bits.

G‟ =

Alice encodes

x∈ by G‟ x,

which looks like

x followed by

3 extra bits.

The Hamming(7,4) Code

Alice sends 4-bit messages using 7 bits.

G =

Any „codeword‟ y = Gx

satisfies some „parity checks‟:

y1 = y3 + y5 + y7

y2 = y3 + y6 + y7

y4 = y5 + y6 + y7

H =

I.e., Hy = 0

Let‟s permute

the output 7 bits

(rows of G‟)

The Hamming(7,4) Code

Alice communicates 4-bit messages using 7 bits.

G =

H =

Hy = 0, because HG = 0.

Columns are 1…7 in binary!

The Hamming(7,4) Code

H =

On receiving z∈ , Bob computes Hz.

If no errors, z = Gx, so Hz = HGx = 0.

If jth coordinate corrupted, z = Gx+ej.

Then Hz = H(Gx+ej) = HGx + Hej

 = Hej = (j‟th column of H) = binary rep. of j

Bob knows where the error is, can recover msg!

Sending longer messages: General Hamming Code

By sending n = 7 bits, Alice can communicate

one of 16 messages, guarding against 1 error.

This scheme generalizes: Let n = 2r−1,

 take H to be the r×(2r−1) matrix whose

 columns are the numbers 1…2r-1 in binary.

There are 2n-r = 2n/(n+1) solutions z  {0,1}n to the

check equations Hz = 0.

• These are codewords of the Hamming code of

 length n

Summary: Hamming code

To detect 1 bit error in n transmitted bits:

• one parity check bit suffices,

• so can communicate 2n-1 messages by

 sending n bits.

To correct 1 bit error in n transmitted bits:

• for n = 2r – 1, r check bits suffice

• so can communicate 2n/(n+1) messages by

 sending n bits

Fact (left as exercise): This is optimal!

11

Polynomials:

Lagrange Interpolation

Parallel with Chinese Remaindering

Reed-Solomon codes:

 Erasure correction via
interpolation

 Error correction

Hamming codes:

 Correcting 1 bit error Study Guide

