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15-251: Great Theoretical Ideas in Computer Science 

Error Correction 

Lecture 17 

October 23, 2014 

Polynomial Interpolation 

Let arbitrary pairs (a1,b1), (a2,b2), …, (ad+1,bd+1) 

from a field F be given (with all ai‟s distinct). 

Then there always exists a polynomial P(x) of  

degree   d with P(ai) = bi for all i. 

Theorem: 

Lagrange Interpolation 
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Want P(x) 
(with degree ≤ d)  

such that  P(ai) = bi  ∀i. 

Lagrange Interpolation 
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Can we do this special case? 

Lagrange Interpolation 
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Idea #2: 

Denominator 

is a nonzero 

field element 

Numerator  

is a deg. d  

polynomial 

Call this the selector polynomial for a1. 
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What about above data? 
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And for this data, 

Polynomial Interpolation 
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The Chinese Remainder Theorem had a 

very similar proof 

Not a coincidence:  

algebraically, integers & polynomials  
share many common properties 

Lagrange interpolation is the exact analog of 
Chinese Remainder Theorem for polynomials. 

Let   mi = N/ni 

x = a1 T1  + a2 T2  + ... +  ak Tk 

i‟th “selector” number: Ti = (mi
-1 mod ni) mi  

Recall: Interpolation 

Let pairs (a1,b1), (a2,b2), …, (ad+1,bd+1) 

from a field F be given (with all ai‟s distinct). 

Theorem:  

 There is a unique degree d polynomial P(x)  

    satisfying  P(ai) = bi for all i = 1…d+1. 

A linear algebra view  

Let p(x) = p0 + p1x + p2 x
2 + … + pd x

d 

Need to find the coefficient vector (p0,p1,…,pd)  

p(a) = p0 + p1 a + …+ pd a
d 

         = 1  p0 + a  p1 + a2 p2 + … + ad pd 

 
Thus we need to solve: 
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Lagrange interpolation 
 

Thus can recover coefficient vector as  

The columns of M-1  are given by the coefficients 

of the various “selector” polynomials we constructed 

in Lagrange interpolation. 

Representing Polynomials 

Let P(x)∈F[x] be a degree-d polynomial. 

Representing P(x) using d+1 field elements: 

1. 

2. 

List the d+1 coefficients. 

Give P‟s value at d+1 different elements. 

Rep 1 to Rep 2:   

Rep 2 to Rep 1:   

Evaluate at d+1 elements 

Lagrange Interpolation 

Application of Fields/Polynomials 

(and linear algebra): 

Error-correcting codes 

Sending messages on a noisy channel 

Alice Bob 

“ bit.ly/vrxUBN ” 

The channel may corrupt up to k symbols. 

How can Alice still get the message across? 

Sending messages on a noisy channel 

The channel may corrupt up to k symbols. 

How can Alice still get the message across? 

Let‟s say messages are sequences from  

vrxUBN      ↔     118  114  120  85  66  78 

vrxUBN      ↔     118  114  104  85  35  78 

noisy channel 

Sending messages on a noisy channel 

How to correct the errors? 

How to even detect that there are errors? 

Let‟s say messages are sequences from  

vrxUBN      ↔     118  114  120  85  66  78 

vrxUBN      ↔     118  114  104  85  35  78 

noisy channel 
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Simpler case:  “Erasures” 

What can you do to handle up to k erasures? 

118  114  120  85  66  78 

118   114    ??   85   ??   78 

erasure channel 

Repetition code 

118  114  120  85  66  78 

erasure channel 

Have Alice repeat each symbol k+1 times. 

118  118   118  114  114  114  120  120  120  85  85  85  66  66  66  78  78  78 

becomes 

118  118   118   ??   ??   114  120  120  120  85  85  85  66  66  66  78  78  78 

If at most k erasures, Bob can figure out each symbol. 

Repetition code – noisy channel 

118  114  120  85  66  78 

noisy channel 

Have Alice repeat each symbol 2k+1 times. 

118  118   118  114  114  114  120  120  120  85  85  85  66  66  66  78  78  78 

becomes 

118  118   118  114  223  114  120  120  120  85  85  85  66  66  66  78  78  78 

At most k corruptions:  Bob can take majority of each block. 

This is pretty wasteful! 

To send message of d+1 symbols and 

guard against k erasures, we had 

to send (d+1)(k+1) total symbols. 

Can we do better? 

This is pretty wasteful! 

To send even 1 message symbol with  

k erasures, need to send k+1 total symbols. 

To send message of d+1 symbols and 

guard against k erasures, we had 

to send (d+1)(k+1) total symbols. 

Maybe for d+1 message symbols with k erasures,  

d+k+1 total symbols can suffice?? 

Enter polynomials 

Say Alice‟s message is d+1 elements from 

118  114  120  85  66  78 

Alice thinks of it as the coefficients of a  

degree-d polynomial P(x) ∈          [x] 

P(x) = 118x5 + 114x4 + 120x3 + 85x2 + 66x + 78 

Now trying to send the degree-d polynomial P(x). 
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Send it in the Values Representation! 

Alice sends P(x)‟s values on d+k+1 inputs: 

P(1), P(2), P(3), …, P(d+k+1) 

P(x) = 118x5 + 114x4 + 120x3 + 85x2 + 66x + 78 

This is called the Reed–Solomon encoding. 

Send it in the Values Representation! 

Alice sends P(x)‟s values on d+k+1 inputs: 

P(1), P(2), P(3), …, P(d+k+1) 

P(x) = 118x5 + 114x4 + 120x3 + 85x2 + 66x + 78 

If there are at most k erasures, then 

Bob still knows P‟s value on d+1 points. 

Bob recovers P(x) using Lagrange Interpolation! 

Example 

PDF417 codes 
= 2-d Reed-Solomon 

codes 

Maxicodes 
= “UPS codes” 
= another 2-d  

Reed-Solomon codes 

Another everyday use: 

Reed−Solomon codes are used a lot in practice! 

CD/DVDs, hard discs,  

satellite communication, … 

What aboout corruptions/errors 

To even communicate 1 symbol while  

enabling recovery from k errors,  

need to send 2k+1 total symbols. 

To send message of d+1 symbols  

and enable correction from up to k errors,  

repetition code has to send (d+1)(2k+1) total symbols. 

Maybe for d+1 message symbols with k errors,  

d+2k+1 total symbols can suffice?? 

k k 

Want to send a polynomial of degree-d 

subject to at most k corruptions. 

Suppose we try the same idea 

• Evaluate P(X) at d+1+k points 

• Send P(0), P(1), P(2), …, P(d+k) 

At least d+1 of these values will be unchanged 

First simpler problem: Error detection 
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P(X) = 2X2 + 1, and k = 1. 

 

So I sent P(0)=1, P(1)=3, P(2)=9, P(3)=19 

 

Corrupted email says (1, 4, 9, 19) 

 

Choosing (1, 4, 9) will give us Q(X) =  

Example 

X2 + 2X + 1 

We can now detect (up to k) errors 

Evaluate P(X) at d+1+k points 

Send P(0), P(1), P(2), …, P(d+k) 

At least d+1 of these values will be correct 

Say P(0), P‟(1) , P(2), P(3), P‟(4), …, P(d+k) 

Using these d+1 correct values will give P(X) 

Using any of the incorrect values will  

give something else 

Quick way of  detecting errors 

Interpolate first d+1 points to get Q(X) 

Check that all other received values are  

consistent with this polynomial Q(X) 

If all values consistent, no errors. 

In that case, we know Q(X) = P(X) 

else there were errors… 

How good is our encoding? 

Naïve Repetition: 

To send d+1 numbers with error detection,  

sent (d+1)(k+1) numbers 

Polynomial Coding: 

To send d+1 numbers with error detection,  

sent  (d+k+1) numbers 

How about error correction? 

To send d+1 numbers in such a way 

that we can correct up to k errors,  

need to send d+1+2k numbers. 

requires more work 

Similar encoding scheme 

Evaluate degree-d P(x) at d+1+2k points 

Send P(0), P(1), P(2), …, P(d+2k) 

At least d+1+k of  these values will be correct 

Say P(0), P(1) , P(2), P(3), P(4), …, P(d+2k) 

Trouble: How do we know which are correct? 
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Theorem: P(X) is the unique degree-d polynomial  

that agrees with the received data on 

at least d+1+k points 

And if  a different degree-d polynomial R(X) did so,  

R(X) and P(X) would have to agree with each other on  

d+1 points, and hence be the same. 

Clearly, the original polynomial P(X) 

agrees with data on d+1+k points  

(since at most k errors, out of total d+1+2k points) 

So any such R(X) = P(X) 

Brute-force Algorithm to find P(X): 

 

Interpolate each subset of (d+1) points 

 

Check if the resulting polynomial agrees  

with received data on d+1+k pts 

Takes too much time… 

Theorem: P(X) is the unique degree-d polynomial  

that agrees with the received data on 

at least d+1+k points 

A fast (cubic runtime) algorithm to decode was given 

by [Peterson, 1960]  

 

Later improvements by Berlekamp and Massey  

gave practical algorithms 

Aside: Recent research (incl. some of my own) 

 has given algorithms to correct even more than k 

errors (in a meaningful model) 

We will now describe the Welch-Berlekamp 

algorithm to recover the original polynomial 

when there are k errors 

Reed-Solomon codes  

 Message = (m0,m1,…,md)  Fd+1      

   (F =Zp ) 

 Polynomial curve Y = P(X) = m0+m1X+…+mdXd 

 Encoding = eval. at n= d+2k+1 distinct  ai  F  

Y 

X 

 
Two curves differ in 

> 2k positions 

 
 
Message uniquely 

identifiable for up to  

k errors 

 

  Efficient recovery? 

( P(a1), P(a2) … P(an) ) 

a1 a2 a3 

 

 Given n = d+2k+1  points (ai,yi) where  

 received value yi  P(ai) for at most k 

points. 

 If we locate positions of errors, problem 

then easy by interpolation on correct data 

Error-correction approach Locating the errors 

Y 

X 

Noisy points mess up  

curve-fitting/interpolation 
 
Interpolate more general  

curve through all n points 

Here‟s such a curve. 

(Y-P(X)) (X-a2) (X-a5) = 0 

Y = P(X) 

Here E(X) := (X-a2) (X-a5)  is the error locator polynomial, with 

roots at all error locations 

a1 
a2 

a4 
a5 

Of course, we don’t know E(X)  

(that‟s the whole problem!) 
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Developing the algorithm 

Let Err be subset of k erroneous locations, and 

define error locator polynomial E(X) =  i  Err (X – ai) 

Let N(X) = E(X) P(X); degree(N) = d + k. 

  

• degree(E) = k 

We have E(ai) yi = E(ai) P(ai) for i=1,2,…,n 

So    E(ai) yi – N(ai) = 0     for all points (ai, yi)  

Can we use above to find polynomials E(X) and N(X)  

(and hence also P(X) = N(X)/E(X) )? 

Finding N and E 

   E(ai) yi – N(ai) = 0     for all points (ai, yi)  

Finding E(X) and N(X) is same as finding the unknowns 

b0, b1, …, bk-1, c0, …, cd+k   

• There are k +(d+k+1) = d+2k+1 = n  unknowns 

•  Also n linear equations E(ai) yi – N(ai) = 0  

 in these n unknowns (why are they linear?) 

• E(X) = Xk  + bk-1X
k-1 + … + b0  = 

• N(X) = cd+k X
d+k + … + c1 X + c0 

So we can find E(X) and N(X)  by solving this  

linear system and then output N(X)/E(X) 

Spurious solutions? 
We know coefficients of E(X) and N(X)=E(X)P(X)  

are a solution, but what if there are other solutions? 

Lemma: If E1(X) and N1(X) are a different solution, 

to E1(ai) yi – N1(ai) = 0 with deg(E1)  k, deg(N1)  d+k, 

 then N1(X)/E1(X) = P(X) 

Proof: Define R(X)= E1(X)P(X)–N1(X) 

So R(X) has at least d+k+1 roots.         R(X) =0     

degree(R)  d+k When P(ai)= yi,  

 R(ai) =E1(ai)P(ai)–N1(ai) = E1(ai)yi –N1(ai) = 0 

 

Thus every solution  (E1,N1) to the linear system  

yields the same P(X)  as the ratio!  

Sending messages on a noisy channel 

Alice Bob 

     Message:  d+1 symbols from   

To guard against k corruptions, 

treat message as coeffs of poly P, 

send P(1), P(2), …, P(d+2k+1) 

Reed–Solomon: 

Um, what if 

d+2k+1 > 257? 

Sending messages on a noisy channel 

Alice Bob 

     Message:  d+1 symbols from   

To guard against k corruptions, 

treat message as coeffs of poly P, 

send P(1), P(2), …, P(d+2k+1) 

Reed–Solomon: 

Um, what if 

d+2k+1 > 257? 

What if the noisy 

channel corrupts bits, 

not bytes? 

(Can we have fewer 

redundant bits?) 

Sending messages on a noisy channel 

Alice wants to send an n-bit message to Bob. 

The channel may flip up to k bits. 

How can Alice get the message across? 
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Sending messages on a noisy channel 

Alice wants to send an (n−1)-bit message to Bob. 

The channel may flip up to 1 bit. 

How can Alice get the message across? 

Q1:  How can Bob detect if there‟s been a bit-flip? 

Parity-check solution 

Alice tacks on a bit, equal to  

the parity of the message‟s n−1 bits. 

Alice‟s n-bit „encoding‟ always has 

an even number of 1‟s. 

Bob can detect if the channel flips a bit: 

if he receives a string with an odd # of 1‟s. 

1-bit error-detection for 2n−1 messages  

by sending n bits:  optimal!  (simple exercise) 

Linear Algebra perspective 

G: an n×(n−1) 

„generator‟ matrix 
  Alice‟s 

message x∈ 

= 

Bob 

receives 

Linear Algebra perspective 

Let C be the set of strings Alice may transmit. 

C is the span of the columns of G. 

C is a subgroup of  

[In linear algebra terms, an  

(n−1)-dimensional subspace of the vector space     ] 

Linear Algebra perspective 

Bob 

receives 

H:   a 1×n  

„parity check‟  

matrix 

= 
? 

0 

Bob checks this 

to detect if no errors 

Solves 1-bit error detection, but not correction 

     If Bob sees z = (1, 0, 0, 0, 0, 0, 0), 

 
 

 

 

 

did Alice send y = (0, 0, 0, 0, 0, 0, 0), 

                   or y = (1, 1, 0, 0, 0, 0, 0), 

                      or y = (1, 0, 1, 0, 0, 0, 0), 

                   or… ? 
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The Hamming(7,4) Code 

Alice communicates 4-bit messages (16 possible messages)  

by transmitting 7 bits. 

G‟ =  

Alice encodes 

x∈          by G‟ x, 
 

which looks like 

x followed by 

3 extra bits. 

The Hamming(7,4) Code 

Alice sends 4-bit messages using 7 bits. 

G =  

Any „codeword‟ y = Gx 

satisfies some „parity checks‟: 

y1 = y3 + y5 + y7 

y2 = y3 + y6 + y7 

y4 = y5 + y6 + y7 

 

H =  

I.e., Hy = 0 

Let‟s permute 

the output 7 bits 

(rows of G‟) 

The Hamming(7,4) Code 

Alice communicates 4-bit messages using 7 bits. 

G =  

H =  

Hy = 0, because HG = 0. 

Columns are 1…7 in binary! 

The Hamming(7,4) Code 

H =  

On receiving z∈    , Bob computes Hz. 

If no errors, z = Gx, so Hz = HGx = 0. 

If jth coordinate corrupted, z = Gx+ej.   

Then Hz = H(Gx+ej) = HGx + Hej  

              = Hej = (j‟th column of H) = binary rep. of  j 

Bob knows where the error is, can recover msg! 

Sending longer messages: General Hamming Code 

By sending n = 7 bits, Alice can communicate  

one of 16 messages, guarding against 1 error. 

This scheme generalizes:  Let n = 2r−1,   

     take H to be the r×(2r−1) matrix whose  

     columns are the numbers 1…2r-1 in binary. 

There are 2n-r = 2n/(n+1)  solutions z  {0,1}n  to the 

check equations Hz  = 0. 

• These are codewords of the Hamming code of    

 length n  

Summary: Hamming code 

To detect 1 bit error in n transmitted bits: 

• one parity check bit suffices,  

• so can communicate  2n-1 messages by  

        sending n bits. 

To correct 1 bit error in n transmitted bits: 

• for n = 2r – 1,  r check bits suffice 

• so can communicate 2n/(n+1) messages by 

 sending n bits 

Fact (left as exercise):  This is optimal! 
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Polynomials: 

Lagrange Interpolation 

Parallel with Chinese Remaindering 

    

Reed-Solomon codes: 

   Erasure correction via 
interpolation 

   Error correction 

Hamming codes: 

    Correcting 1 bit error Study Guide 


