15-251: Great Theoretical Ideas in Computer Science

Lecture 17
October 23, 2014

Error Correction

Lagrange Interpolation

Qg1 Dgs1

Want P(x)
(with degree < d)
such that P(a) = b; Vi.

Lagrange Interpolation

Denominator
is a nonzero
field element

Numerator
isadeg. d
polynomial

ad+1

ldea #2:
(x—a2)(x—a3)--(x—ad+1)

S - -
L (a1 —a2)(a1 —a3):-- (a1 —ad+1)

Call this the selector polynomial for a;.

Polynomial Interpolation

Theorem:

Let arbitrary pairs (a;,b,), (a,,0,), ..., (Qgs1,04+1)
from a field F be given (with all a’s distinct).
Then there always exists a polynomial P(x) of
degree < d with P(a;) = b, for all i.

Lagrange Interpolation

1

Qg1

Can we do this special case?

a4

ad+1
What about above data?

(x—ai1)(x—az)---(x—ad+1)

Sa(x) = (a2 — a1)(az2 —a3)---(a2 — ad+1)

And for this data,

Sd+1(x) = (x —a1)(x—az2)---(x —ad)

The Chinese Remainder Theorem had a

very similar proof “

Not a coincidence:
algebraically, integers & polynomials
share many common properties

Lagrange interpolation is the exact analog of
Chinese Remainder Theorem for polynomials.

Recall: Interpolation

Let pairs (a;,by), (@2,0,), ..., (Ags1,0441)
from a field F be given (with all a's distinct).

Theorem:
There is a unique degree d polynomial P(x)
satisfying P(a) = b;foralli=1...d+1.

(ad+1 —a1)(@d+1 — @z2) -+ (ad+1 — ad)

Polynomial Interpolation

b d

g1 (o)

b1:S1(x)+b2+S2(x)+++++bd+1 - Sd+1(x)

: SUppose 11, Mo T are pairwise coprime.
hen, for all integers a1, az. ..., ax, there exists an integer 2 solving the below
svstem Elf h‘hlll]]rﬂﬂ(‘llllﬁ congruences

r=a; (modng)

r=ay (mod ny)

r=a; (modng) .

Further, all solutions @ are congruent modulo N = [[7

Let m; =N/n,

i'th “selector” number: T, = (m;X mod n;) m,

X=a, T;+a, T, +...+ a T,

A linear algebra view

Let p(x) = P + P1X + Py X2 + ... + py x°
Need to find the coefficient vector (pg Py,...,Pq)

p(@)=py+pa+..+pyal
=1-pot+a-p;+azpy+..+adpy

Thus we need to solve:

2
Qa1 gy " f'JfHL

Lagrange interpolation

The (d+ 1) x (d+ 1) Vandermonde matrix

a a}
s a3

2
L agsr agy,

is invertible.

The columns of M are given by the coefficients
of the various “selector” polynomials we constructed
in Lagrange interpolation.

Application of Fields/Polynomials
(and linear algebra):

Error-correcting codes

Sending messages on a hoisy channel

Let's say messages are sequences from 257

vriXUBN < 118 114 120 85 66 78

noisy channel l

118 114 104 85 35 78

The channel may corrupt up to k symbols.

How can Alice still get the message across?

Representing Polynomials

Let P(x)eF[x] be a degree-d polynomial.
Representing P(x) using d+1 field elements:

1. List the d+1 coefficients.

2. Give P’s value at d+1 different elements.

Rep 1 to Rep 2: Evaluate at d+1 elements

Rep 2 to Rep 1: Lagrange Interpolation

Sending messages on a noisy channel

Alice Bob

“ bit.ly/vrxUBN ”

The channel may corrupt up to k symbols.

How can Alice still get the message across?

Sending messages on a nhoisy channel

Let's say messages are sequences from [F257

viXUBN < 118 114 120 85 66 78

noisy channel l

118 114 104 85 35 78

How to correct the errors?

How to even detect that there are errors?

Simpler case: “Erasures”

118 114 120 85 66 78

erasure channel l

118 114 ?? 85 ?? 78

What can you do to handle up to k erasures?

Repetition code — noisy channel
Have Alice repeat each symbol 2k+1 times.

118 114 120 85 66 78
becomes

118 118 118 114 114 114 120 120 120 85 85 85 66 66 66 78 78 78

noisy channel l

118 118 118 114 223 114 120 120 120 85 85 85 66 66 66 78 78 78

At most k corruptions: Bob can take majority of each block.

This is pretty wasteful!

To send message of d+1 symbols and
guard against k erasures, we had
to send (d+1)(k+1) total symbols.

To send even 1 message symbol with
k erasures, need to send k+1 total symbols.

Maybe for d+1 message symbols with k erasures,
d+k+1 total symbols can suffice??

Repetition code
Have Alice repeat each symbol k+1 times.

118 114 120 85 66 78
becomes

118 118 118 114 114 114 120 120 120 85 85 85 66 66 66 78 78 78

erasure channel l

118 118 118 ?? ?? 114 120 120 120 85 85 85 66 66 66 78 78 78

If at most k erasures, Bob can figure out each symbol.

This is pretty wasteful!

To send message of d+1 symbols and
guard against k erasures, we had

to send (d+1)(k+1) total symbols.

Can we do better?

Enter polynomials

Say Alice’s message is d+1 elements from F2s57

118 114 120 85 66 78

Alice thinks of it as the coefficients of a
degree-d polynomial P(x) € [F257[X]

P(X) = 118x5 + 114x* + 120x3 + 85x2 + 66X + 78

Now trying to send the degree-d polynomial P(x).

Send it in the Values Representation!

P(x) = 118x5 + 114x* + 120x3 + 85x2 + 66X + 78
Alice sends P(x)’s values on d+k+1 inputs:

P(1), P(2), P(3), ..., P(d+k+1)

This is called the Reed—Solomon encoding.
ot |
* " i

What aboout corruptions/errors

To send message of d+1 symbols
and enable correction from up to k errors,
repetition code has to send (d+1)(2k+1) total symbols.

To even communicate 1 symbol while |G
enabling recovery from k errors, I
need to send total symbols. I —

k 3

Maybe for d+1 message symbols with k errors,
total symbols can suffice??

Send it in the Values Representation!

P(x) = 118x5 + 114x* + 120x3 + 85x2 + 66x + 78

Alice sends P(x)’'s values on d+k+1 inputs:
P(1), P(2), P(3), ..., P(d+k+1)

If there are at most k erasures, then
Bob still knows P’s value on d+1 points.

Bob recovers P(x) using Lagrange Interpolation!

Reed-Solomon codes are used a lot in practice!

CD/DVDs, hard discs,

Another everyday use: . ok
satellite communication, ...

Maxicodes
="UPS codes”
=another 2-d

Reed-Solomon codes

G

i

cac

(PEUSTPRODD: A AGRED] 1211 RINGER
mowamm 1 EA o on

KAGE COUNT:

PACRAGE GO 10F 1
LI}

PDF417 codes|

= 2-d Reed-Solomon

Want to send a polynomial of degree-d
subject to at most k corruptions.

First simpler problem: Error detection

Suppose we try the same idea

« Evaluate P(X) at d+1+k points

- Send P(0), P(1), P(2), ..., P(d+k)

At least d+1 of these values will be unchanged

Example

P(X) =2X2+1,and k = 1.
So | sent P(0)=1, P(1)=3, P(2)=9, P(3)=19
Corrupted email says (1, 4, 9, 19)

Choosing (1, 4, 9) will give us Q(X) = X2+2X +1

Quick way of detecting errors

Interpolate first d+1 points to get Q(X)

Check that all other received values are
consistent with this polynomial Q(X)

If all values consistent, no errors.

In that case, we know Q(X) = P(X)

else there were errors...

How about error correction?

requires more work

To send d+1 numbers in such a way
that we can correct up to k errors,
need to send d+1+2k numbers.

We can now detect (up to k) errors

Evaluate P(X) at d+1+k points

Send P(0), P(1), P(2), ..., P(d+k)

At least d+1 of these values will be correct
Say P(0), , P(2), P(3), ..., P(d+k)
Using these d+1 correct values will give P(X)

Using any of the incorrect values will
give something else

How good is our encoding?

Naive Repetition:
To send d+1 numbers with error detection,
sent (d+1)(k+1) numbers

Polynomial Coding:
To send d+1 numbers with error detection,
sent (d+k+1) numbers

Similar encoding scheme

Evaluate degree-d P(x) at d+1+2k points

Send P(0), P(1), P(2), ..., P(d+2k)

At least d+1+k of these values will be correct

SEVAL(OR , P(2), P(3), s oees P(d+2K)

Trouble: How do we know which are correct?

Theorem: P(X) is the unique degree-d polynomial
that agrees with the received data on
at least d+1+k points

Clearly, the original polynomial P(X)
agrees with data on d+1+k points
(since at most k errors, out of total d+1+2k points)

And if a different degree-d polynomial R(X) did so,
R(X) and P(X) would have to agree with each other on
d+1 points, and hence be the same.

So any such R(X) = P(X)

A fast (cubic runtime) algorithm to decode was given
by [Peterson, 1960]

Later improvements by Berlekamp and Massey
gave practical algorithms

We will now describe the Welch-Berlekamp
algorithm to recover the original polynomial
when there are k errors

Aside: Recent research (incl. some of my own)
has given algorithms to correct even more than k
errors (in a meaningful model)

Error-correction approach

= Given n = d+2k+1 points (a,y;) where
received value y; = P(a;) for at most k
points.

= |f we locate positions of errors, problem
then easy by interpolation on correct data

TN

Theorem: P(X) is the unique degree-d polynomial
that agrees with the received data on
at least d+1+k points

Brute-force Algorithm to find P(X):
Interpolate each subset of (d+1) points

Check if the resulting polynomial agrees
with received data on d+1+k pts

Takes too much time...

Reed-Solomon codes

Message = (my,m,,...,my) € F3+*

Polynomial'djrr:veY = P(X) = m+m X+...+m X¢
Encoding = eval. at n= d+2k+1 distinct a, e F

fficient recovery?
Two curves differ in

> 2k positions

'Message uniquely
identifiable for up to
k errors

Locating the errors

Noisy points mess up
curve-fitting/interpolation

Interpolate more general
curve through all n points Y

Here’s such a curve. a
(Y-P(X)) (X-2) (X-a5) = O [HEKIEHER

Here E(X) := (X-a,) (X-as) is the error locator polynomial, with

roots at all error locations
Of course, we don’t know E(X)

(that's the whole problem!)

Developing the algorithm

Let Err be subset of k erroneous locations, and
define error locator polynomial E(X) = [g, (X — @)
* degree(E) = k

We have E(a) y;, = E(g) P(a) fori=1,2,...,n
Let N(X) = E(X) P(X); degree(N) =d + k.
So E(a)y,—N(a)=0 forall points (a; y;)

Can we use above to find polynomials E(X) and N(X)
(and hence also P(X) = N(X)/E(X))?

Spurious solutions?
We know coefficients of E(X) and N(X)=E(X)P(X)
are a solution, but what if there are other solutions?

Lemma: If E,(X) and N,(X) are a different solution,
to E; (&) y; — N,(a;) = O with deg(E,) <k, deg(N,) < d+k,
then
Proof: Define R(X)= E;(X)P(X)-N,(X)
When P(a)=Y,
R(a|) :El(a|)P(a|)_Nl(al) = El(a|)y| _Nl(al) =0

So R(X) has =RX)=0 O

Thus every solution (E,;,N,) to the linear system
yields the same P(X) as the ratio!

What if the noisy
channel corrupts bits,
not bytes?

(Can we have fewer
redundant bits?)

@iinst k corruptions,
age as coeffs of poly P,
P(1), P(2), ..., P(d+2k+1)

Finding N and E

E(a) y;—N(a) =0 forall points (a;,)
cE(X) =Xk + b XK1+ .. +Db, =
* N(X) = Cgop X+ ...+ 0, X+ Cg

Finding E(X) and N(X) is same as finding the unknowns

b, by, ..., by Cos -
* There are k +(d+k+1) = d+2k+1 = n unknowns
« Also n linear equations E(a;) y,— N(a) =0
in these n unknowns (why are they linear?)

So we can find E(X) and N(X) by solving this
linear system and then output N(X)/E(X)

-5 Caak

Message: d+1 symbols from [F257

To guard against k corruptions,
treat message as coeffs of poly P,
send P(1), P(2), ..., P(d+2k+1)

Reed-Solomon:

Sending messages on a nhoisy channel

Alice wants to send an n-bit message to Bob.

The channel may flip up to k bits.

How can Alice get the message across?

Sending messages on a noisy channel Parity-check solution
Alice tacks on a bit, equal to

the parity of the message’s n—1 bits.

Alice wants to send an (n—1)-bit message to Bob.
Alice’s n-bit ‘encoding’ always has
an even number of 1’s.

The channel may flip up to 1 bit.
Bob can detect if the channel flips a bit:

How can Alice get the message across? if he receives a string with an odd # of 1’s.
1-bit error-detection for 2"-' messages

Q1: How can Bob detect if there’s been a bit-flip? by sending n bits: optimall (simple exercise)

Linear Algebra perspective Linear Algebra perspective

%1 Y1
X2
X3 Y2 Let C be the set of strings Alice may transmit.

Xn-1 C is the span of the columns of G.

1 ... C is a subgroup of F}
[In linear algebra terms, an
G: an nx(n-1) Alice’s (n—1)-dimensional subspace of the vector space [Fg]
generator’ matrix message x€ iFg‘l receives

Linear Algebra perspective
Solves 1-bit error detection, but not correction

111
f If Bobseesz=(1,0,0,0,0,0, 0),

H: alxn _
‘parity check’ :

matrix Zn-1 did Alice send y = (0, 0, 0, 0, 0, O, 0),

Zn ory=(1,1,0,0,0,0,0),

ory=(10,1,0,0,0,0),

/ Bob checks this or...?

Bob .
. to detect if no errors
receives

o

The Hamming(7,4) Code 3

Alice communicates 4-bit messages (16 possible messages
by transmitting 7 bits.

Alice encodes
X€E E; by G’ x,

which looks like
x followed by
3 extra bits.

The Hamming(7,4) Code

Alice communicates 4-bit messages using 7 bits.

Columns are 1...7 in binary!

1
0
0

0 0
11
1 01

HHEHFOOOOHK
HOHOORO n

Hy = 0, because HG = 0.

Sending longer messages: General Hamming Code

By sending n = 7 bits, Alice can communicate
one of 16 messages, guarding against 1 error.

This scheme generalizes: Letn=2-1,
take H to be the rx(2'-1) matrix whose
columns are the numbers 1...2"-1 in binary.

There are 2""= 2"/(n+1) solutions z € {0,1}" to the
check equations Hz = 0.
* These are codewords of the Hamming code of
length n

The Hamming(7,4) Code

Alice sends 4-bit messages using 7 bits.

Any ‘codeword’ y = Gx
satisfies some ‘parity checks’:
Yi=Ys+tYstYyr
Y2=Ys+ Yt Y7
Y4=Ys+¥Ys T Y7

Let's permute
the output 7 bits
(rows of G’)

==l == O

The Hamming(7,4) Code

On receiving z€F/, Bob computes Hz.

If no errors, z = Gx, so Hz = HGx = 0.
If jth coordinate corrupted, z = Gx+e;.
Then Hz = H(Gx+e)) = HGX + He;
= He; = (j'th column of H) = binary rep. of j

Bob knows where the error is, can recover msg!

Summary: Hamming code

To detect 1 bit error in n transmitted bits:
« one parity check bit suffices,
* SO can communicate 2"! messages by
sending n bits.

To 1 bit error in n transmitted bits:
«forn=2"-1, r check bits suffice
* SO can communicate 2"/(n+1) messages by
sending n bits

Fact (left as exercise): This is optimal!

10

Study Guide

Polynomials:
Lagrange Interpolation
Parallel with Chinese Remainderin

Reed-Solomon codes:

Erasure correction via
interpolation

Error correction

Hamming codes:
Correcting 1 bit error

11

