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Markov Chain − Definition 

• Directed graph,  self-loops OK 

• Always assumed strongly connected in 251 

• Each edge labeled by a positive probability 

• At each node (“state”), the probabilities 

on outgoing edges sum up to 1. 

• The process starts in one of these states and 

moves successively from one state to another 

1856–1922 

Markov Chain 
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In 1907, A. A. Markov began the study of chance process. In 
this process, all of the past outcomes could influence our 
predictions for the next experiment. This type of process is 
called a Markov chain 

Markov Chain − Notation 

Suppose there are n states. 
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n✕n  transition matrix M: 

Mi,j= Pr [i → j in 1 step] 

  0  .2  .7  .1 

  0  .6  .4   0 

  0  .1   0  .9 

  1   0   0   0 

M =  Rows sum to 1 

(“stochastic matrix”) 
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Markov Chain − Notation 

For time t = 0, 1, 2, 3, …  

Xt denotes the state (node) at time t. 

Somebody decides on X0. 

Then X1, X2, X3, … are random variables. 

X0 = W 

X1 = C 

X2 = C 

X3 = W 
and so on 

M =  
  .4   .6    0 

  .3   .1   .6 

  .5    0   .5 

W C F 

W 

C 

F 

Pr [X1 =  C | X0 = W]  =   .6 

Pr [X1 = C | X0 = F]    =    0 

Pr [X6 = W | X5 = C]    =   .3 

Pr [Xt+1 = j | Xt = i]      =   M[i,j] 

What is Pr [X1 = W | X0 = C] ? 

M =  
  .4   .6    0 

  .3   .1   .6 

  .5    0   .5 

W C F 

W 

C 

F 

What is Pr [X2 = W | X0 = C] ? 

Conditioning on X1, using Law of Total Probability 

Pr [X2 = W | X0 = C]  =   

Pr [X1 = W | X0 = C] · Pr [X2 = W | X1 = W]  

+  Pr [X1 =  C  | X0 = C] · Pr [X2 = W | X1 = C]  

+  Pr [X1 =  F  | X0 = C] · Pr [X2 = W | X1 = F]  

= .3 · .4 + .1 · .3 + .6 · .5 = .45 

In general, what is Pr [X2 = j | X0 = i] ? 

Conditioning on X1, using Law of Total Prob… 

i j 

i’s row j’s column 

n

1k

j]M[k, k]M[i,

j][i,M2

Matrix 

multiplication 

Pr[X2=j|X0=i] = k]X |jPr[X i]X |kPr[X 12

n

1k
01

What is Pr[X3 = j | X0 = i] ? 

Conditioning on X2, using Law of Total Prob… 

j][i,Mj]M[k, k][i,M 3
n

1k

2

In general,   Pr [Xn = j | X0 = i] = Mn [i, j]. 

Mn  gives the probability that the Markov chain  

starting at state i will be in state j after n steps. 

k]X |jPr[X i]X |kPr[X 23

n

1k
02

A random initial state 

Often assume the initial state X0 is 

also chosen randomly in some way… 

e.g.,  X0  ~  50%       20%      30% 

W C F 

a distribution vector  
(nonnegative, adds to 1) 

distribution vector for 

X0 usually denoted π0 
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 X0  ~  π0  =  50%       20%      30% 

W C F 

Pr [X1 = W] = .5 · .4  +  .2 · .3  +  .3 · .5 = .41 

Conditioning on X0, using Law of Total Prob… 

M =  
  .4   .6    0 

  .3   .1   .6 

  .5    0   .5 

W C F 

W 

C 

F 

In general, if X0 ~ π0, what is Pr [X1 = j] ? 

Conditioning on X0, using Law of Total Prob… 

I.e., the distribution vector for X1 is π1 = π0 · M 

And, the distribution vector for Xn is  πn  = π0 · Mn 

M π0 
M)[j](πj]M[k, [k]π 0

n

1k
0

vector matrix 

k]X |jPr[X k]Pr[X 01

n

1k
0

Let M be the transition matrix of a Markov chain, 

and let is π0 be the probability vector which 

represents the starting distribution. Then the 

probability that the chain is in state i after n 

steps is the i-th entry in the vector  

πn  = π0 · Mn 

The Invariant Distribution 

(aka the Stationary Distribution) 

Recall:   Mn [i,j] = Pr [i → j in exactly n steps] 

M =  
  .4   .6    0 

  .3   .1   .6 

  .5    0   .5 

W C F 

W 

C 

F 

.25.3.45

.36.19.45

.36.3.34

M2

.324324.27027.405405

.324324.27027.405405

.324324.27027.405405

M15

.32409.27063.40528

.323957.270497.405546

.324756.269831.405413

M7

This limiting row  (assuming the limit exists)  is called 

the invariant distribution π. 

“In the long run,  

40.6% of the time I’m working, 

27.0% of the time I’m on coffee break, 

32.4% of the time I’m on Facebook.” 

What’s up with this? 

.324324.27027.405405

.324324.27027.405405

.324324.27027.405405

M15
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Raising M to a large power is annoying.  

Invariant Distribution Calculation 

“π is invariant”:  if you start in this distribution 

       and you take one more step, 

         you’re still in the distribution. 

π = π M i.e.,  

For fixed M, this yields a system of equations. 

π = π M 

  .4  .6   0 

  .3  .1  .6 

  .5   0  .5 

π [W]   π [C]   π [F] π [W]   π [C]   π [F] = 

π [W] = .4 π [W] + .3 π [C] + .5 π [F] 

   π [C] = .6 π [W] + .1 π [C] +  0 π [F] 

  π [F] =  0 π [W] + .6 π [C] + .5 π [F] 

1 = π [W] + π [C] + π [F] 

And we need to add another equation  

(in order to get a unique solution) 

π = π M 

 Solve[{w == 0.3 c + 0.5 f + 0.4 w, 
            c == 0.1 c + 0.6 w, 
            f == 0.6 c + 0.5 f, 
            1 == w + c + f}, {w, c, f}] 

Solving the system in Mathematica, yields 

π [W] = 0.405405, π [C] = 0.27027, π [F] = 0.324324  

Fundamental Theorem 

Given a  (finite, strongly connected)  Markov Chain with 

transition matrix M, there is a unique 

invariant distribution π satisfying π = π M. 

Fundamental Theorem 

… unless the chain has some stupid “periodicity” 

2 1 

100% 

100% 

No limiting dist., but π = (½ ½) is still invariant. 

Expected Time from u to u 

In a Markov Chain with invariant distribution π,  

suppose π [u] = 1/3. 

If you walked for N steps, you would expect to  
 

be at state u about         times.   

The average time between successive visits  
 

to u would be about               . 

 

Not hard to turn this into a theorem. 

3
N/3

N

N/3
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Mean First Recurrence Theorem 

In a Markov Chain with invariant distribution π, 

E [# steps to from u to u] =  
π[u]

1

Markov Chain Summary 

M[i,j] = Pr [i → j in 1 step], transition matrix 

Mn
 [i,j] = Pr [i → j in exactly n steps] 

If πt is distribution at time t, πt = π0 Mt 

∃ a unique invariant distribution π s.t. π = π M 

E [# steps to go from u to u] =  

t
t

πlimπ

Interlude:  Altavista 

1997:  Web search was horrible. You search for 

“CMU”, it finds all  the pages  containing “CMU” & 

sorts by # occurrences. 

Interlude:  PageRank 

Sites should be considered important not only if they  are  

linked to by many others, but also if they link to many others.  

Billionaires Nevanlinna Prize, 10k euro 

Jon Kleinberg Page and Brin 

Interlude:  PageRank 

Lorem 

Ipsum 
Dolor 
Sit 

Amet 

Lorem 

Ipsum 
Dolor 
Sit 

Amet 

Lorem 

Ipsum 
Dolor 
Sit 

Amet 

Lorem 

Ipsum 
Dolor 
Sit 

Amet 

Lorem 

Ipsum 
Dolor 
Sit 

Amet 

Measure importance with 

Random Surfer model: 

• Follows a random outgoing 

link with prob. α 
 

• Jumps to a completely 

random page with prob. 1−α 
 

• α is a parameter (≈ 85%) 

PageRank:  compute the invariant distribution π, 

     rank pages u by highest π [u] value! 

Random walks on 

undirected graphs 
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Connected undirected graph. 
 

Each step: go to a random neighbor. 

What is the transition matrix M? 

1/3 1/3 

1/3 1/3 

1/2 

1/2 1/2 

1/2 

1/3 1/3 

1 

3 

2 4 

Adjacency matrix: 

What is the transition matrix M? 

÷ d1 
÷ d2 
÷ d3 
÷ d4 

Transition matrix: 

01/201/2

1/301/31/3

01/201/2

1/31/31/30

M

0101

1011

0101

1110

A

degrees 

What is the invariant distribution π? 

Assuming no “stupid periodicity”,  

same as the limiting distribution. 

Higher degree 

≡ higher limiting prob? 

 

Could π [u] just be  

proportional to degree du? 

(periodicity iff bipartite, actually) 

Theorem: In random walk on undirected graph 

G=(n,m), inv. distribution 

(Σ di = 2m) 
Proof: We need to verify  M = .  

Consider j’s row: 

2m

d
a

2m

1

d

a

2m

d
...

d

a

2m

d

d

a

2m

d j
n

1k
kj

n

njn

2

2j2

1

1j1

Thus, 

= π  
2m

d
...

2m

d

2m

d
M π n21

2m

d
...

2m

d

2m

d
M π n21

2m

d
...

2m

d

2m

d
π n21

nnnnn2nn1

22n222221

11n112111

da...dada

............

da...dada

da...dada

Corollary 

In random walk on undirected (connected) graph G, 
 

E [# steps to go from u to u] = 

Proof: 

Mean first recurrence theorem: 

In a Markov Chain with invariant distribution π, 

E [# steps to go from u to u] =  

ud

 2m

π[u]

 1

Examples 

π: 1/4 1/2 1/4 

E[v->v]: 4 2 4 

2m

d
...

2m

d

2m

d
 π n21

m=#edges 
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Examples 

π: 

E[v->v]: 

Pn+1, the path on n+1 nodes: 

2n n n n 2n 

2m

d
...

2m

d

2m

d
 π n21

2n

1
2n

2

2n

1

2n

2

2n

2

Examples 

The clique on n nodes: 

π = ( 1/n  1/n  1/n  ···  1/n ) 

E[v->v] = n 

m = n(n-1)/2 

dv=n-1 

Proposition: Let (u0,v0) be an edge in G=(n,m). 

E [# steps to go u0 -> v0]  ≤ 2m−1  

Proof: Suppose v0 is connected 

to u0, u1, …, uk. 

G 
v0 

u0 u1 

u2 

uk 
Use conditioning on the first 

step. 

Drop all terms but i=0 

]uv stepsE[#
d

2m
00

v0

]uv|uv stepsE[#]uPr[v i000

k

0i
i0

])vu stepsE[#(1
d

1
])vu stepsE[#(1

d

1
00

v0
0i

k

0i v0

Theorem: Let G=(n,m) be a connected graph. Let u 

and v be any two vertices. Then  

E [# steps u->v] ≤ 2 m n ≤ n3 

Proof: 

Pick a path u, w1, w2, …, wr, v. At most n nodes. 

E[# of steps u→v] ≤ E[# of steps u→w1→···→wr→v]  

 = E[u→w1] + E[w1→w2] + ··· + E[wr→v] 

 ≤ 2m + 2m + ··· + 2m  ≤  2 m n. 

Examples 

The clique on n nodes: 

Thm:  E [# steps to hit v  

               starting from u]  

    ≤ 2mn ≤ n3 
u 

v 

Actually:  # steps to hit v  starting from u 

         ~ Geom, so expectation is n−1. 

Connectivity problem 

Given graph G, possibly 

disconnected, and two vertices  

u and v. Are u and v connected? 

Easily solved in O(m) time using DFS/BFS. 
 

Requires ‘marking’ nodes,  

hence ≥ n bits of memory need to be allocated. 

Do it with O(1) memory. 
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A randomized algorithm  
[Aleliunas,Karp,Lipton,Lovász,Rackoff in 1979] 

z := u 

for t = 1 ... 1000n3 

    z := random-neighbor(z) 

   if z = v, return “YES” 

end for 

return “NO” 

Assume a variable can hold a number between 1 & n. 

one variable four variables 

for t0 = 1…1000 

  for t1 = 1…n 

    for t2 = 1…n 

      for t3 = 1…n 

couple more variables 

A randomized algorithm for CONN: 

z := u 

for t = 1 ... 1000n3 

    z := random-neighbor(z) 

   if z = v, return “YES” 

end for 

return “NO” 

True answer is NO:   alg. always says NO 

True answer is YES:  alg. says YES w/prob ≥ 99.9% 

Why? 

PROOF. Suppose u and v are indeed in the same 

connected component. 

We do a random walk from u until we hit v.   

Let T = # steps it takes,  a random variable. 

Then, E [T] ≤ n3, by our theorem. 

 

Pr [T > 1000n3] = ??? 

Markov’s Inequality: 

0.1%
1000n

n
]1000nPr[T

3

3
3

c

E[X]
c]Pr[X

Markov Chains 
   Transition matrix 

Invariant distribution  

PageRank 

Random walk on graphs 

Randomized Algorithm 
Here’s What You 
Need to Know… 


