15-251: Great Theoretical Ideas in Computer Science Lecture 15 October 16, 2014

# Algebra II: Fields, Polynomials

#### Recap: Definition of a group

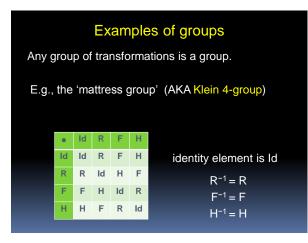
#### G is a "group under operation •" if:

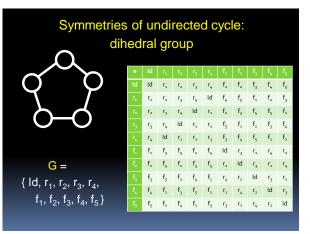
0. [Closure] G is closed under .i.e.,  $a \bullet b \in G \quad \forall a, b \in G$ 

1. [Associativity] Operation • is associative: i.e.,  $\mathbf{a} \cdot (\mathbf{b} \cdot \mathbf{c}) = (\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c} \quad \forall \mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbf{G}$ 

2. [Identity] There exists an element e∈G (called the "identity element") such that
 a • e = a, e • a = a ∀ a∈G

3. [Inverse] For each a∈G there is an element a<sup>-1</sup>∈G (called the "inverse of a") such that
 a • a<sup>-1</sup> = e, a<sup>-1</sup> • a = e





# Symmetries of directed cycle: Cyclic group • Id R1 R2 R3 Id Id R1 R2 R3 R1 R1 R2 R3 Id R2 R2 R3 Id R1

In a group table, every row and every column is a permutation of the group elements Follows because (i)  $a b = a c \Rightarrow b = c$ (ii)  $b a = c a \Rightarrow b = c$ 

R<sub>3</sub> Id R<sub>1</sub> R<sub>2</sub>

R<sub>3</sub>

#### Abelian groups

In a group we do NOT NECESSARILY have

 $a \bullet b = b \bullet a$ 

Definition: " $a,b \in G$  commute" means ab = ba.

Definition: A group is said to be abelian if all pairs  $a,b \in G$  commute.

#### Order of a group element

Let G be a *finite* group. Let a∈G. Definition: The order of x, denoted ord(a), is the smallest m ≥ 1 such that a<sup>m</sup> = 1. Note that a, a<sup>2</sup>, a<sup>3</sup>, ..., a<sup>m-1</sup>, a<sup>m</sup>=1 all distinct.

## Order Theorem: For every $a \in G$ , ord(a) divides |G|.

Corollary:  $a^{|G|}=1$  for all  $a \in G$ .

Corollary (Euler's Theorem): For  $a \in Z_n^*$ ,  $a^{\phi(n)} = 1$ That is, if gcd(a,n)=1, then  $a^{\phi(n)} \equiv 1 \pmod{n}$ 

Corollary (Fermat's little theorem): For prime p, if gcd(a,p)=1, then  $a^{p-1} \equiv 1 \pmod{p}$ 

# Cyclic groups

(1 is a generator)

A finite group G of order n is cyclic if  $G = \{e, b, b^2, ..., b^{n-1}\}$  for some group element b

In such a case, we say **b** *"generates"* G, or **b** is a *"generator"* of G.

#### Examples:

• (Z<sub>n</sub>, +)

• C<sub>4</sub>

(Rot<sub>90</sub> is a generator)

Non-examples: Mattress group; any non-abelian group.

# How many generators does $(Z_n, +)$ have?

Answer:  $\Phi(n)$ 

b generates  $Z_n \Leftrightarrow \exists a \text{ s.t. } ba \equiv 1 \pmod{n}$ (ba = b+b+...+b (a times))

Same holds for *any* cyclic group with n elements

# Subgroups

Q: Is (Even integers, +) a group?

A: Yes. It is a "subgroup" of  $(\mathbb{Z},+)$ 

<u>Definition</u>: Suppose (G,  $\bullet$ ) is a group.

If  $H \subseteq G$ , and if  $(H, \bullet)$  is also a group, then H is called a subgroup of G.

To check H is a subgroup of G, check:

- 1. H is closed under •
- 2. e ∈ H
- 3. If  $h \in H$  then  $h^{-1} \in H$ 
  - (3<sup>rd</sup> condition follows from 1,2 if H is finite)

#### Examples

Every G has two trivial subgroups: {e}, G Rest are called "proper" subgroups

$$\begin{split} & \text{Suppose } k, \ 1 < k < n, \ divides \ n. \\ & \text{Q1. Is } (\{ o, k, 2k, 3k, ..., (n/k-1)k \}, +_n) \ \text{subgroup of } (Z_{n'}+_n) \ ? \\ & \text{Yes!} \end{split}$$

Q2. Is  $(Z_{k\prime}+_k)$  a subgroup of  $(Z_{n\prime}+_n)?$  No! it doesn't even have the same operation

Q3. Is  $(Z_{k}, +_n)$  a subgroup of  $(Z_n, +_n)$ ? No!  $Z_k$  is not closed under  $+_n$ 

# Lagrange's Theorem

Theorem: If G is a finite group, and H is a subgroup then |H| divides |G|.

Proof similar to order theorem.

Corollary (order theorem): If  $x \in G$ , then ord(x) divides |G|. Proof of Corollary: Consider the set  $T_x = (x, x^2, x^3, ...)$ 

(i) ord(x) = |T<sub>x</sub>|

(ii)  $(T_x, \bullet)$  is a subgroup of  $(G, \bullet)$  (check!)

#### A useful corollary

If G is a finite group and H is a proper subgroup of G, then  $|H| \le |G|/2$ 

Example:

 $G = (\{0,1\}^n, +) (+: coordinate-wise addition mod 2)$ 

 $H = \{(x_1, x_2, \dots, x_n) : x_1 + x_2 + \dots + x_n = 0\}$ 

H is a proper subgroup (check!) So  $|H| \le 2^{n-1}$ (in fact, in this case,  $|H| = 2^{n-1}$ )

It was nice meeting you, groups!

## Number Theory Interlude II

#### Bezout's identity

Let a,b be arbitrary positive integers. There exist integers r and s such that r a + s b = gcd(a,b)

Follows from Extended Euclid Algorithm

A non-algorithmic proof:

• Consider the set L of all *positive* integers that can be expressed as r a + s b for some integers r,s.

• L is non-empty (eg.  $a \in S$ )

 So L has a minimum element d (well-ordering principle ⇔ principle of induction)

<u>Claim</u>: d = gcd(a,b)

<u>Claim</u>: gcd(a,b) = d (the minimum positive integer expressible as ra+sb)

- gcd(a,b) divides both a and b, and hence also divides d. So d ≥ gcd(a,b)
- 2. d divides both a and b, and hence  $d \le gcd(a,b)$

Let's show d | a. Write a = q d + t , with  $0 \le t < d$ .

 t = a - q d is also expressible as a combination r' a + s' b.
 Contradicts minimality of d.

#### Extended Euclid & Unique Factorization

<u>Lemma</u>: If gcd(a,b)=1 and  $a \mid bc$ , then  $a \mid c$ .

<u>Proof:</u> Let r,s be such that r a + s b = 1

rac+sbc=c

a | bc and a | r a c, so a | c.  $\Box$ 

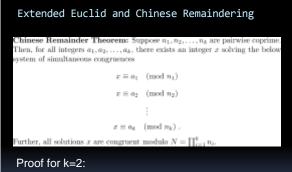
<u>Corollary</u>: If p is a prime and p |  $q_1 q_2 \dots q_k$ , then p must divide some  $q_i$ . If the  $q_i$ 's are also prime, then  $p = q_i$  for some i.

Unique prime factorization follows from this!

#### Extended Euclid and Chinese Remaindering Chinese Remainder Theorem: Suppose $n_1, n_2, \ldots, n_k$ are pairwise coprime. Then, for all integers $a_1, a_2, \ldots, a_k$ , there exists an integer x solving the below system of simultaneous congruences $x \equiv a_1 \pmod{n_1}$ $x \equiv a_2 \pmod{n_2}$ $\vdots$ $x \equiv n_k \pmod{n_k}$ . Further, all solutions x are congruent modulo $N = \prod_{i=1}^k n_i$ . Uniqueness of solutions modulo N

If x,y are two solutions, then  $n_i$  divides x-y, for i=1,2,...k

Since the  $n_i$  are coprime, this means the product  $N = n_1 n_2 \dots n_k$  divides (x-y), thus  $x \equiv y \pmod{N}$ 



Take  $x = a_1 (n_2^{-1} \mod n_1) n_2 + a_2 (n_1^{-1} \mod n_2) n_1$ Can compute x efficiently (by computing modular inverses)

| Extended Euclid and C                                                                                                 | ninese Rer                         | naindering                                                              |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------|
| Chinese Remainder Theorem: Sup<br>Then, for all integers $a_1, a_2,, a_k$ , the<br>system of simultaneous congruences |                                    |                                                                         |
| $x \equiv a_1$                                                                                                        | $\pmod{n_1}$                       |                                                                         |
| $x \equiv a_2$                                                                                                        | $\pmod{n_2}$                       |                                                                         |
|                                                                                                                       | 1                                  |                                                                         |
| $x \equiv a_k$                                                                                                        | $(\mod n_k)$ .                     |                                                                         |
| Further, all solutions $x$ are congruent                                                                              | modulo $N = \prod_{i=1}^{k}$       | $=_{1} n_{i}$ .                                                         |
| For arbitrary k: Let m <sub>i</sub> =                                                                                 |                                    | te gcd(m <sub>i</sub> ,n <sub>i</sub> ) = 1<br>m <sub>i</sub> for j ≠ i |
| Take $x = a_1 (m_1^{-1} \mod n_1)$<br>+ $a_k (m_k^{-1} \mod n_k) m_k$                                                 | m <sub>1</sub> + a <sub>2</sub> (m | 2 <sup>-1</sup> mod n <sub>2</sub> ) m <sub>2</sub> +                   |



Find out about the wonderful world of **F**<sub>2</sub>\* where two equals zero, plus is minus, and squaring is a linear operator!

- Richard Schroeppel



A group is a set with a single binary operation.

Number-theoretic sets often have more than one operation defined on them.

For example, in  $\mathbb{Z}$ , we can do both addition and multiplication.

Same in  $Z_n$  (we can add and multiply modulo n)

For reals  $\mathbb{R}$  or rationals  $\mathbb{Q}$ , we can also divide (inverse operation for multiplication).

# **Fields**

# Informally, it's a place where you can add, subtract, multiply, and divide.

| Examples: | Real numbers     |                            | $\mathbb{R}$          |  |  |
|-----------|------------------|----------------------------|-----------------------|--|--|
|           | Rational numb    | $\mathbb{Q}$               |                       |  |  |
|           | Complex num      | bers                       | $\mathbb{C}$          |  |  |
|           | Integers mod     | prime                      | Z <sub>p</sub> (Why?) |  |  |
|           |                  |                            |                       |  |  |
| NON-exam  | oles: Integers 2 | Z                          | division??            |  |  |
|           | Non-nega         | ative reals $\mathbb{R}^+$ | subtraction??         |  |  |

#### Field – formal definition A field is a set F with two Example: binary operations, $F_3 = Z_3^*$ called + and •. (F,+) an abelian group, with 0 0 1 2 identity element called 0 1 1 2 0 2 2 0 1 $(F \setminus \{0\}, \bullet)$ an abelian group, identity element called 1 0 0 0 1 0 1 2 Distributive Law holds: 2 0 2 1 $a \cdot (b+c) = a \cdot b + a \cdot c$

# Example

Quadratic "number field"  $\mathbb{Q}(\sqrt{2}) = \{ \ a + b \ \sqrt{2} : a, b \in \mathbb{Q} \ \}$ 

Addition:  $(a + b \sqrt{2}) + (c + d \sqrt{2}) = (a+c) + (b+d) \sqrt{2}$ 

Multiplication:  $(a + b \sqrt{2}) \bullet (c + d \sqrt{2}) = (ac+2bd) + (ad+bc) \sqrt{2}$ 

Exercise: Prove above defines a field.

| Finite fields                                                                                                  |    |   |     |   |    |    |    |           |   |   |   |     |
|----------------------------------------------------------------------------------------------------------------|----|---|-----|---|----|----|----|-----------|---|---|---|-----|
| Some familiar <i>infinite</i> fields: $\mathbb{Q}$ , $\mathbb{R}$ , $\mathbb{C}$ (now $\mathbb{Q}(\sqrt{2})$ ) |    |   |     |   |    |    |    |           |   |   |   |     |
| Finite fields we know: $Z_p$ aka $F_p$ for p a prime                                                           |    |   |     |   |    |    |    | p a prime |   |   |   |     |
| Is there a fiel                                                                                                | ld | w | ith | 2 | el | em | en | ts        | ? |   |   | Yes |
| Is there a fiel                                                                                                | ld | w | ith | 3 | el | em | en | ts        | ? |   |   | Yes |
| Is there a fiel                                                                                                | ld | W | ith | 4 | el | em | en | ts        | ? |   |   | Yes |
|                                                                                                                | +  | 0 | 1   | а | b  |    | •  | 0         | 1 | а | b |     |
|                                                                                                                | 0  | 0 | 1   | a | b  |    | 0  | 0         | 0 | 0 | 0 |     |
| F4                                                                                                             |    |   | 0   |   |    |    |    |           | 1 |   | b |     |
|                                                                                                                | a  | а | b   | 0 |    |    | а  | 0         |   | b | 1 |     |
|                                                                                                                | b  | b | а   | 1 | 0  |    | b  | 0         | b | 1 | а |     |

# **Finite fields**

| Is there a field with 2 elements?  | Yes |
|------------------------------------|-----|
| Is there a field with 3 elements?  | Yes |
| Is there a field with 4 elements?  | Yes |
| Is there a field with 5 elements?  | Yes |
| Is there a field with 6 elements?  | No  |
| Is there a field with 7 elements?  | Yes |
| Is there a field with 8 elements?  | Yes |
| Is there a field with 9 elements?  | Yes |
| Is there a field with 10 elements? | No  |



Evariste Galois (1811–1832) introduced the concept of a finite field (also known as a Galois Field in his honor)

# **Finite fields**

Theorem (which we won't prove): There is a field with **q** elements

if and only if **q** is a power of a prime.

Up to *isomorphism*, it is unique.

That is, all fields with q elements have the same addition and multiplication tables, after renaming elements.

This field is denoted  $F_q$  (also GF(q))

# **Finite fields**

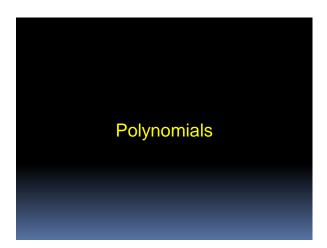
#### Question:

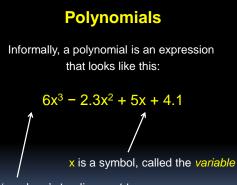
If q is a prime power but not just a prime, what **are** the addition and multiplication tables of  $\mathbf{F}_{\Box}$ ?

#### Answer:

It's a bit hard to describe.

We'll tell you later, but for 251's purposes, you only need to know about prime q.





the 'numbers' standing next to powers of x are called the *coefficients* 

# Polynomials

Informally, a polynomial is an expression that looks like this:

$$6x^3 - 2.3x^2 + 5x + 4.$$

Actually, coefficients can come from any field.

Can allow multiple variables, but we won't.

Set of polynomials with variable x and coefficients from field F is denoted **F**[x].

## Polynomials – formal definition

Let F be a field and let x be a variable symbol.

F[x] is the set of polynomials over F, defined to be expressions of the form

# $c_d x^d + c_{d-1} x^{d-1} + \dots + c_2 x^2 + c_1 x + c_0$

where each  $c_i$  is in F, and  $c_d \neq 0$ .

We call d the degree of the polynomial. Also, the expression 0 is a polynomial. (By convention, we call its degree  $-\infty$ .)

#### Adding and multiplying polynomials

You can add and multiply polynomials.

**Example.** Here are two polynomials in  $\mathbb{F}_{11}[x]$ 

$$P(x) = x^2 + 5x - 1$$
  
 $Q(x) = 3x^3 + 10x$ 

 $P(x) + Q(x) = 3x^3 + x^2 + 15x - 1$ = 3x<sup>3</sup> + x<sup>2</sup> + 4x - 1 = 3x<sup>3</sup> + x<sup>2</sup> + 4x + 10

#### Adding and multiplying polynomials

You can add and multiply polynomials (they are a "ring" but we'll skip a formal treatment of rings)

Example. Here are two polynomials in  $F_{11}[x]$ 

$$P(x) = x^2 + 5x - 7$$
  
 $Q(x) = 3x^3 + 10x$ 

 $P(x) \bullet Q(x) = (x^2 + 5x - 1)(3x^3 + 10x)$ = 3x<sup>5</sup> + 15x<sup>4</sup> + 7x<sup>3</sup> + 50x<sup>2</sup> - 10x = 3x<sup>5</sup> + 4x<sup>4</sup> + 7x<sup>3</sup> + 6x<sup>2</sup> + x

#### Adding and multiplying polynomials

Polynomial addition is associative and commutative. 0 + P(x) = P(x) + 0 = P(x). P(x) + (-P(x)) = 0. So (F[x], +) is an abelian group!

Polynomial multiplication is associative and commutative.  $1 \cdot P(x) = P(x) \cdot 1 = P(x).$ Multiplication distributes over addition:  $P(x) \cdot (Q(x) + R(x)) = P(x) \cdot Q(x) + P(x) \cdot R(x)$ 

> If P(x) / Q(x) were always a polynomial, then F[x] would be a field! Alas...

#### Dividing polynomials?

- P(x) / Q(x) is not necessarily a polynomial.
- So F[x] is not quite a field. (It's an "integral domain")
- Same with Z, the integers: it has everything except division.

Actually, there are many analogies between F[x] and  $\mathbb{Z}$ .

 starting point for rich interplay between algebra, arithmetic, and geometry in modern mathematics

#### Dividing polynomials?

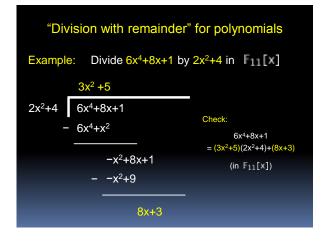
 $\ensuremath{\mathbb{Z}}$  has the concept of "division with remainder":

Given a,b∈ℤ, b≠0, can write

 $a = q \cdot b + r$ , where r is "smaller than" b.

F[x] has the same concept:

Given A(x),B(x) $\in$ F[x], B(x) $\neq$ 0, can write A(x) = Q(x)•B(x) + R(x), where deg(R(x)) < deg(B(x)).



# Polynomials F[x] "size" = degree "size" = abs. value "division":

can use Euclid's Algorithm to find GCDs

a = qb+r, |r| < |b|

"division":

Integers  $\mathbb{Z}$ 

p is "prime": no nontrivial divisors

ℤ mod p: a field iff p is prime

#### A(x) = Q(x)B(x)+R(x),deg(R) < deg(B)can use Euclid's Algorithm to find GCDs

P(x) is "irreducible": no nontrivial divisors

F[x] mod P(x): a field iff P(x) is irreducible (with |F|<sup>deg(P)</sup> elements)

# The field with 4 elements

Degree < 2 polynomials  $\{0,1,x,1+x\} \subseteq \mathbb{F}_2[x]$ 

Addition and multiplication modulo 1+x+x<sup>2</sup>

|       | + | 0 | 1 | а | b | • | 0 |   | а | b |
|-------|---|---|---|---|---|---|---|---|---|---|
| Ea    | 0 | 0 | 1 | а | b | 0 | 0 | 0 | 0 | 0 |
| * 4   |   | 1 | 0 | b | а |   | 0 | 1 | а | b |
| a=x   | а | а | b | 0 | 1 | а | 0 | а | b | 1 |
| b=1+x | b | b | а | 1 | 0 | b | 0 | b | 1 | а |

Enough algebraic theory. Let's play with polynomials!

# **Evaluating polynomials**

Given a polynomial  $P(x) \in F[x]$ , P(a) means its evaluation at element a.

E.g., if  $P(x) = x^2+3x+5$  in  $F_{11}[x]$ 

 $P(6) = 6^2 + 3 \cdot 6 + 5 = 36 + 18 + 5 = 59 = 4$ 

 $P(4) = 4^2 + 3 \cdot 4 + 5 = 16 + 12 + 5 = 33 = 0$ 

**Definition:**  $\alpha$  is a **root** of P(x) if P( $\alpha$ ) = 0.

# **Polynomial roots**

#### Theorem:

Let  $P(x) \in F[x]$  have degree 1. Then P(x) has exactly 1 root.

#### Proof:

Write P(x) = cx + d (where  $c \neq 0$ ). Then P(r) = 0 $\Leftrightarrow$  cr + d = 0 cr = -d $\Leftrightarrow$ r = -d/c. ⇔

# **Polynomial roots**

#### Theorem:

Let  $P(x) \in F[x]$  have degree 2. Then P(x) has... how many roots??

E.g.: x<sup>2+1</sup>

| # of roots over | $F_2[x]$     | 1 (namely, 1)        |
|-----------------|--------------|----------------------|
| # of roots over | F3[X]        | 0                    |
| # of roots over | F5[X]        | 2 (namely, 2 and 3)  |
| # of roots over | <b>ℝ</b> [x] | 0                    |
| # of roots over | C[x]         | 2 (namely, i and -i) |

The single most important theorem about polynomials over fields:

# A nonzero degree-d polynomial has at most d roots.

# <u>Theorem</u>: Over a field, for all $d \ge 0$ , a nonzero degree-d polynomial P has at most d roots.

#### Proof by induction on $d \in \mathbb{N}$ :

 Base case:
 If P(x) is degree-0 then P(x) = a for some  $a\neq 0$ .
 Recall our convention:

 This has 0 roots.
 deg(0) = -  $\infty$ 

#### Induction:

Assume true for  $d \ge 0$ . Let P(x) have degree d+1. If P(x) has 0 roots: we're done! Else let b be a root. Divide with remainder: P(x) = Q(x)(x-b) + R(x). (\*) deg(R) < deg(x-b) = 1, so R(x) is a constant. Say R(x)=r. Plug x = b into (\*): 0 = P(b) = Q(b)(b-b)+r = 0+r = r. So P(x) = Q(x)(x-b). Now, deg(Q) = d.  $\therefore$  Q has  $\le$  d roots.

 $\therefore$  P(x) has  $\le$  d+1 roots, completing the induction.

## A useful corollary

<u>Theorem</u>: Over a field F, for all  $d \ge 0$ , degree-d polynomials have at most d roots.

<u>Corollary</u>: Suppose a polynomial  $R(x) \in F[x]$ is such that (i) R has degree  $\leq$  d and (ii) R has > d roots Then R must be the 0 polynomial

I've used the above corollary *several times* in my research.

#### Theorem:

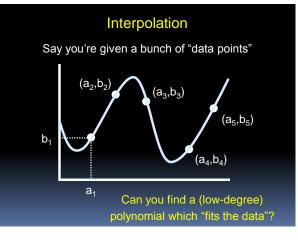
Over a field, degree-d polynomials have at most d roots.

#### Reminder:

This is only true over a field.

E.g., consider P(x) = 3x over  $Z_6$ .

It has degree 1, but 3 roots: 0, 2, and 4.



#### Interpolation

Let pairs  $(a_1,b_1)$ ,  $(a_2,b_2)$ , ...,  $(a_{d+1},b_{d+1})$ from a field F be given (with all  $a_i$ 's distinct).

#### Theorem:

There is exactly one polynomial P(x)of degree at most d such that  $P(a_i) = b_i$  for all i = 1...d+1.

E.g., through 2 points there is a unique linear polynomial.

#### Interpolation

There are two things to prove.

- 1. There is at *least* one polynomial of degree  $\leq$  d passing through all d+1 data points.
- 2. There is at *most* one polynomial of degree  $\leq$  d passing through all d+1 data points.

Let's prove #2 first.

#### Interpolation

<u>Theorem</u>: Let pairs  $(a_1,b_1)$ ,  $(a_2,b_2)$ , ...,  $(a_{d+1},b_{d+1})$ from a field F be given (with all a's distinct). Then there is at most one polynomial P(x)of degree at most d with  $P(a_i) = b_i$  for all i.

<u>Proof</u>: Suppose P(x) and Q(x) both do the job. Let R(x) = P(x)-Q(x). Since deg(P), deg(Q) ≤ d we must have deg(R) ≤ d. But R(a<sub>i</sub>) = b<sub>i</sub>-b<sub>i</sub> = 0 for all i = 1...d+1. Thus R(x) has more roots than its degree.  $\therefore$  R(x) must be the 0 polynomial, i.e., P(x)=Q(x).

#### Interpolation

Now let's prove the other part, that there is at least one polynomial.

#### Theorem:

Let pairs  $(a_1,b_1)$ ,  $(a_2,b_2)$ , ...,  $(a_{d+1},b_{d+1})$ from a field F be given (with all a's distinct). Then there exists a polynomial P(x) of degree at most d with P(a<sub>i</sub>) = b<sub>i</sub> for all i.

| Inter | no | atio | h |
|-------|----|------|---|
|       |    | aut  |   |

The method for constructing the polynomial is called Lagrange Interpolation.

Discovered in 1779 by Edward Waring.



Rediscovered in 1795 by J.-L. Lagrange.

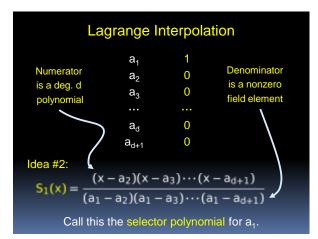


| Lagrange                                                                                     | Interpolation                                                                                  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|
| a <sub>1</sub><br>a <sub>2</sub><br>a <sub>3</sub><br><br>a <sub>d</sub><br>a <sub>d+1</sub> | b <sub>1</sub><br>b <sub>2</sub><br>b <sub>3</sub><br><br>b <sub>d</sub><br>b <sub>d+1</sub>   |  |  |  |  |  |
| (with d                                                                                      | Want P(x)<br><sup>(with degree ≤ d)</sup><br>such that P(a <sub>i</sub> ) = b <sub>i</sub> ∀i. |  |  |  |  |  |

|                                                                             | La | agrange li       | nterpolat  | tion |  |
|-----------------------------------------------------------------------------|----|------------------|------------|------|--|
|                                                                             |    | a <sub>1</sub>   | 1          |      |  |
|                                                                             |    | a <sub>2</sub>   | 0          |      |  |
|                                                                             |    | a <sub>3</sub>   | 0          |      |  |
|                                                                             |    |                  |            |      |  |
|                                                                             |    | a <sub>d</sub>   | 0          |      |  |
|                                                                             |    | a <sub>d+1</sub> | 0          |      |  |
|                                                                             |    |                  |            |      |  |
|                                                                             | Ca | in we do this    | special ca | ase? |  |
| Promise: once we solve this special case,<br>the general case is very easy. |    |                  |            |      |  |
|                                                                             |    |                  |            |      |  |

| La | Lagrange Interpolation |   |  |  |  |  |
|----|------------------------|---|--|--|--|--|
|    | a <sub>1</sub>         | 1 |  |  |  |  |
|    | a <sub>2</sub>         | 0 |  |  |  |  |
|    | $a_3$                  | 0 |  |  |  |  |
|    |                        |   |  |  |  |  |
|    | a <sub>d</sub>         | 0 |  |  |  |  |
|    | a <sub>d+1</sub>       | 0 |  |  |  |  |
|    | 0                      | 6 |  |  |  |  |

| Lagrange Interpolation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |                  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------|--|--|--|--|--|
| a <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                 |                  |  |  |  |  |  |
| a <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                 | Just divide P(x) |  |  |  |  |  |
| a <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                 | by this number.  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | \                |  |  |  |  |  |
| a <sub>d</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                 |                  |  |  |  |  |  |
| a <sub>d+1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                 |                  |  |  |  |  |  |
| Idea #1: $P(x) = (x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_2)(x-a_$ | Idea #1: $P(x) = (x-a_2)(x-a_3)\cdots(x-a_{d+1})$ |                  |  |  |  |  |  |
| Degree is d. 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                  |  |  |  |  |  |
| $P(a_2) = P(a_3) = \cdots = P(a_{d+1}) = 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                  |  |  |  |  |  |
| $P(a_1) = (a_1 - a_2)(a_1 - a_3) \cdots (a_1 - a_{d+1}).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |                  |  |  |  |  |  |



| Lagrange Interpolation                                                                                               |   |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|---|--|--|--|
| a <sub>1</sub>                                                                                                       | 0 |  |  |  |
| a <sub>2</sub>                                                                                                       | 1 |  |  |  |
| a <sub>3</sub>                                                                                                       | 0 |  |  |  |
|                                                                                                                      |   |  |  |  |
| a <sub>d</sub>                                                                                                       | 0 |  |  |  |
| a <sub>d+1</sub>                                                                                                     | 0 |  |  |  |
| Great! But what about this data?                                                                                     |   |  |  |  |
| $S_{2}(x) = \frac{(x - a_{1})(x - a_{3})\cdots(x - a_{d+1})}{(a_{2} - a_{1})(a_{2} - a_{3})\cdots(a_{2} - a_{d+1})}$ |   |  |  |  |

| Lagrange Interpolation                                                                           |   |  |
|--------------------------------------------------------------------------------------------------|---|--|
| a <sub>1</sub>                                                                                   | 0 |  |
| $a_2$                                                                                            | 0 |  |
| a <sub>3</sub>                                                                                   | 0 |  |
|                                                                                                  |   |  |
| a <sub>d</sub>                                                                                   | 0 |  |
| a <sub>d+1</sub>                                                                                 | 1 |  |
| Great! But what about this data?                                                                 |   |  |
| $S_{d+1}(x) = \frac{(x-a_1)(x-a_2)\cdots(x-a_d)}{(a_{d+1}-a_1)(a_{d+1}-a_2)\cdots(a_{d+1}-a_d)}$ |   |  |
| $(a_{d+1} - a_1)(a_{d+1} - a_2)\cdots(a_{d+1} - a_d)$                                            |   |  |

$$a_{1} \qquad b_{1}$$

$$a_{2} \qquad b_{2}$$

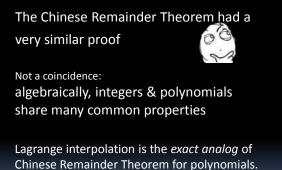
$$a_{3} \qquad b_{3}$$

$$\cdots \qquad \cdots$$

$$a_{d} \qquad b_{d}$$

$$a_{d+1} \qquad b_{d+1}$$
Great! But what about this data?
$$P(x) = b_{1} \cdot S_{1}(x) + b_{2} \cdot S_{2}(x) + \cdots + b_{d+1} \cdot S_{d+1}(x)$$

| Lagrange Interpolation -                                                                                      | - example           |
|---------------------------------------------------------------------------------------------------------------|---------------------|
| Over $Z_{11}$ , find a polynomial P of degree $\leq 2$<br>such that P(5) = 1, P(6) = 2, P(7) = 9.             |                     |
| $S_{5}(x) = 6 (x-6)(x-7)$<br>$S_{6}(x) = -1 (x-5)(x-7)$<br>$S_{7}(x) = 6 (x-5)(x-6)$                          | 1<br>(5 - 6)(5 - 7) |
| $P(x) = 1 S_5(x) + 2 S_6(x) + 9 S_7$ $P(x) = 6(x^2 - 13x + 42) - 2(x^2 - 12x + 35) + 9$ $P(x) = 3x^2 + x + 9$ |                     |
|                                                                                                               |                     |



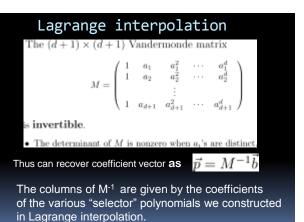


Let pairs  $(a_1,b_1)$ ,  $(a_2,b_2)$ , ...,  $(a_{d+1},b_{d+1})$ from a field F be given (with all  $a_i$ 's distinct).

#### Theorem:

There is a unique degree d polynomial P(x)satisfying  $P(a_i) = b_i$  for all i = 1...d+1.

#### A linear algebra view Let $p(x) = p_0 + p_1 x + p_2 x^2 + ... + p_d x^d$ Need to find the coefficient vector $(p_0, p_1, ..., p_d)$ $p(a) = p_0 + p_1 a + ... + p_d a^d$ $= 1 \cdot p_0 + a \cdot p_1 + a^2 \cdot p_2 + \dots + a^d \cdot p_d$ Thus we need to solve: $a_1$ $a_1^a$ $b_1$ $\overline{p}_0$ 1 $a_{2}^{2}$ $a_2^d$ $a_2$ $p_1$ $b_2$ $1 \quad a_{d+1} \quad a_{d+1}^2 \quad \cdots \quad a_{d+1}^d$



# **Representing Polynomials**

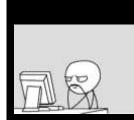
Let  $P(x) \in F[x]$  be a degree-d polynomial.

Representing P(x) using d+1 field elements:

- 1. List the d+1 coefficients.
- 2. Give P's value at d+1 different elements.

Rep 1 to Rep 2:Evaluate at d+1 elements

Rep 2 to Rep 1: Lagrange Interpolation



Study Guide

#### Group Theory: Abelian Order theorem Isomorphism Subgroups

umber Theory: Euler's theorem Chinese Remainder theorem

elde.

Definitions Examples Finite fields of prime order

#### Polynomials:

Degree-d polys have ≤ d roots. Polynomial division with remainder Lagrange Interpolation