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15-251: Great Theoretical Ideas in Computer Science 

Algebra II: 

Fields, Polynomials 

Lecture 15 

October 16, 2014 

Recap: Definition of a group 

G is a “group under operation ” if:    

0. [Closure] G is closed under  

 i.e.,  a  b  G  ∀ a,b∈G 

1. [Associativity] Operation  is associative: 

         i.e.,    a  (b  c) = (a  b)  c    ∀ a,b,c∈G 

 

2. [Identity] There exists an element  e∈G   

 (called the “identity element”) such that 

               a  e = a,  e  a = a   ∀ a∈G 

 

3. [Inverse] For each a∈G there is an element a−1∈G 

 (called the “inverse of a”) such that 

       a  a−1 = e,  a−1  a = e 

Examples of groups 

Any group of transformations is a group. 

  
E.g., the „mattress group‟  (AKA Klein 4-group)  

 Id R F H 

Id Id R F H 

R R Id H F 

F F H Id R 

H H F R Id 

identity element is Id 

R−1 = R  

F−1 = F   

H−1 = H   

 

Symmetries of undirected cycle: 

dihedral group 

G =  

 { Id, r1, r2, r3, r4, 

       f1, f2, f3, f4, f5 } 

 Id r1 r2 r3 r4 f1 f2 f3 f4 f5 

Id Id r1 r2 r3 r4 f1 f2 f3 f4 f5 

r1 r1 r2 r3 r4 Id f4 f5 f1 f2 f3 

r2 r2 r3 r4 Id r1 f2 f3 f4 f5 f1 

r3 r3 r4 Id r1 r2 f5 f1 f2 f3 f4 

r4 r4 Id r1 r2 r3 f3 f4 f5 f1 f2 

f1 f1 f3 f5 f2 f4 Id r3 r1 r4 r2 

f2 f2 f4 f1 f3 f5 r2 Id r3 r1 r4 

f3 f3 f5 f2 f4 f1 r4 r2 Id r3 r1 

f4 f4 f1 f3 f5 f2 r1 r4 r2 Id r3 

f5 f5 f2 f4 f1 f3 r3 r1 r4 r2 Id 

Symmetries of directed cycle: 

Cyclic group 

C4 

 Id R1 R2 R3 

Id Id R1 R2 R3 

R1 R1 R2 R3 Id 

R2 R2 R3 Id R1 

R3 R3 Id R1 R2 

In a group table, every row and every column 

is a permutation of the group elements 

Follows because (i) a b = a c  b = c 

   (ii) b a = c a  b = c 

Abelian groups 

In a group we do NOT NECESSARILY have 
 

a   b = b  a 

Definition:   

  “a,b ∈ G  commute” means ab = ba. 

   

Definition: 

A group is said to be abelian if all pairs a,b ∈ G  

commute. 
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Order of a group element 

Let G be a finite group.  Let a∈G. 

Definition:  The order of x, denoted ord(a), is the  

    smallest m ≥ 1 such that am = 1. 

Note that a, a2, a3, …, am−1, am=1 all distinct. 

Order Theorem: For every a ∈ G, 

  ord(a) divides |G|. 

Corollary:    a|G|=1 for all a∈G. 

Corollary (Euler‟s Theorem):   For a  Zn
* , aϕ(n) = 1 

That is, if gcd(a,n)=1, then aϕ(n)  1 (mod n) 

 

Corollary (Fermat‟s little theorem):  

For prime p, if gcd(a,p)=1, then   

  ap-1  1 (mod p) 
 

Cyclic groups 

A finite group G of order n is cyclic if  

G= {e,b,b2,…,bn-1} for some group element b 

 
In such a case, we say b “generates” G,  

or b is a “generator” of G. 

 

Examples:  

• (Zn, +)    (1 is a generator) 

•  C4      (Rot90 is a generator) 

Non-examples: Mattress group;  

         any non-abelian group. 

How many generators does 

  (Zn, +) have?  

  

Answer: Φ(n)     

Same holds for any cyclic group 

 with n elements 

b generates Zn   a s.t. ba  1 (mod n) 

   (ba = b+b+…+b (a times)) 

Subgroups 

 

Definition: Suppose (G ,) is a group. 

 If  H  G, and if (H,) is also a group, 

  then H is called a subgroup of G. 

Q: Is (Even integers, +) a group? 

A: Yes.     It is a “subgroup” of (ℤ,+) 

To check H is a subgroup of G, check: 
1. H is closed under  
2. e  H 
3. If h  H then h-1  H 

• (3rd condition follows from 1,2 if H is finite) 

Examples 

Suppose k, 1 < k < n, divides n.  
 Q1. Is ({0, k, 2k, 3k, …, (n/k-1)k}, +n) subgroup of (Zn,+n) ? 

 

 

 Q2. Is (Zk, +k) a subgroup of (Zn, +n)? 

 

 

  Q3. Is (Zk, +n) a subgroup of (Zn, +n)? 

No! it doesn’t even have the same operation 

No!  Zk is not closed under +n 

Yes! 

Every G has two trivial subgroups: {e}, G 

 Rest are called “proper” subgroups 
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Lagrange’s Theorem  

Theorem: If G is a finite group, and H is a subgroup then 

|H| divides |G|. 

 

Proof similar to order theorem.  

 
Corollary (order theorem): If x  G, then ord(x) divides |G|. 

Proof of Corollary:  

 Consider the set Tx = (x, x2, x3, …) 

  (i) ord(x) = |Tx|   

  (ii)  (Tx, ) is a subgroup of (G,)    (check!) 

   

A useful corollary 

If G is a finite group and  

H is a proper subgroup of G, then |H|  |G|/2 

Example:  

G = ({0,1}n, +) ( + : coordinate-wise addition mod 2) 

H = {(x1,x2,…,xn) : x1+x2+ … + xn = 0} 

H is a proper subgroup (check!) 

 So |H|  2n-1 
(in fact, in this case, |H| = 2n-1) 

  

It was nice meeting you, groups! 

 
 

Number Theory  
Interlude II 

Bezout’s identity 

Let a,b be arbitrary positive integers. 

There exist integers r and s such that 

  r a + s b = gcd(a,b) 
 

A non-algorithmic proof: 

• Consider the set L of all positive integers that can         

be expressed as r a + s b for some integers r,s. 

• L is non-empty (eg. a  S) 

• So L has a minimum element d 

 (well-ordering principle    principle of induction) 

Follows from 

Extended  

Euclid Algorithm 

Claim: d = gcd(a,b) 

Claim: gcd(a,b) = d (the minimum positive 

integer expressible as ra+sb) 

1. gcd(a,b) divides both a and b, and  

     hence also divides d. So d  gcd(a,b) 

2. d divides both a and b, and hence d  gcd(a,b) 

Let‟s show d | a.  

Write a = q d + t , with 0  t < d. 

t = a – q d is also expressible as a  

 combination r‟ a + s‟ b. 

Contradicts minimality of d. 

Extended Euclid & Unique Factorization 

Lemma: If gcd(a,b)=1 and a | bc, then a | c. 

 
Proof:    Let r,s be such that r a + s b =1 

r a c + s b c = c  

a | bc and a | r a c, so a | c.      

Corollary: If p is a prime and p | q1 q2 … qk,  

  then p must divide some qi. 

If the qi‟s are also prime, then p = qi for some i.  

Unique prime factorization follows from this! 
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Extended Euclid and Chinese Remaindering 

Uniqueness of solutions modulo N 

If x,y are two solutions, then ni divides x-y, for i=1,2,…k 

  
Since the ni are coprime, this means the product 

N = n1 n2 … nk divides (x-y), thus x  y (mod N) 

Extended Euclid and Chinese Remaindering 

Proof for k=2:  

Take x = a1 (n2
-1 mod n1) n2 + a2 (n1

-1 mod n2) n1  

  
Can compute x efficiently (by computing modular inverses) 

Extended Euclid and Chinese Remaindering 

For arbitrary k:  Let   mi = N/ni 

Take x = a1 (m1
-1 mod n1) m1 + a2 (m2

-1 mod n2) m2 + 

…. + ak (mk
-1 mod nk) mk 

  

Note gcd(mi,ni) = 1 

ni | mj for j ≠ i 

Field Theory 

Find out about the wonderful world of      

where two equals zero, plus is minus,  

and squaring is a linear operator!   

 
  

 – Richard Schroeppel 

A group is a set with a single binary operation. 

 

Number-theoretic sets often have more than  

one operation defined on them. 

For example, in ℤ, we can do both addition and 

multiplication. 

 

Same in Zn  (we can add and multiply modulo n) 

For reals ℝ or rationals ℚ, we can also divide 

(inverse operation for multiplication). 
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Fields 

Informally, it‟s a place where you can 

add, subtract, multiply, and divide. 

Examples: Real numbers    ℝ 

Rational numbers  ℚ 

Complex numbers  ℂ 

Integers mod prime      Zp    (Why?) 

NON-examples: Integers ℤ 

Non-negative reals ℝ+ 

division?? 

subtraction?? 

Field – formal definition 

A field is a set F with two  

    binary operations, 

    called + and •.   
= Z3

* 

Example: 

+ 0 1 2 

0 0 1 2 

1 1 2 0 

2 2 0 1 

• 0 1 2 

0 0 0 0 

1 0 1 2 

2 0 2 1 

(F,+) an abelian group, with 

     identity element called 0 

(F \ {0},•) an abelian group, 

     identity element called 1 

Distributive Law holds: 

     a•(b+c) = a•b + a•c 

   Example 

Quadratic “number field” 

 ℚ(2) = { a + b 2 : a,b  ℚ } 

Addition: (a + b 2) + (c + d 2) = (a+c) + (b+d) 2  

Multiplication:  

 (a + b 2)  (c + d 2) = (ac+2bd) + (ad+bc) 2  

Exercise: Prove above defines a field. 

Finite fields 

Some familiar infinite fields:  ℚ, ℝ, ℂ   (now ℚ(2)) 

Finite fields we know:   Zp aka       for p a prime 

Is there a field with 2 elements? Yes 

Is there a field with 3 elements? Yes 

Is there a field with 4 elements? Yes 

+ 0 1 a b 

0 0 1 a b 

1 1 0 b a 

a a b 0 1 

b b a 1 0 

• 0 1 a b 

0 0 0 0 0 

1 0 1 a b 

a 0 a b 1 

b 0 b 1 a 

Evariste Galois (1811−1832) 

introduced the concept of a  

finite field (also known as a  

Galois Field in his honor) 

Finite fields 

Is there a field with 2 elements? Yes 

Is there a field with 3 elements? Yes 

Is there a field with 4 elements? Yes 

Is there a field with 5 elements? Yes 

Is there a field with 6 elements? No 

Is there a field with 7 elements? Yes 

Is there a field with 8 elements? Yes 

Is there a field with 9 elements? Yes 

Is there a field with 10 elements? No 
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Finite fields 

Theorem (which we won‟t prove): 

There is a field with q elements  

if and only if q is a power of a prime. 

Up to isomorphism, it is unique. 
 

That is, all fields with q elements have the  

 same addition and multiplication tables, 

 after renaming elements. 

This field is denoted      (also GF(q)) 

Finite fields 

Question: 

If q is a prime power but not just a prime, 

what are the addition and multiplication 

tables of         ? 

Answer: 

It‟s a bit hard to describe. 
 

We‟ll tell you later, but for 251‟s purposes, 

you only need to know about prime q. 

Polynomials 

Polynomials 

Informally, a polynomial is an expression  

that looks like this: 

6x3 − 2.3x2 + 5x + 4.1 

x is a symbol, called the variable 

the „numbers‟ standing next to  

powers of x are called the coefficients 

Polynomials 
Informally, a polynomial is an expression  

that looks like this: 

Actually, coefficients can come from any field. 

6x3 − 2.3x2 + 5x + 4.1 

Can allow multiple variables, but we won‟t. 

Set of polynomials with variable x and  

coefficients from field F is denoted F[x]. 

Polynomials – formal definition 

Let F be a field and let x be a variable symbol. 
 

F[x] is the set of polynomials over F,  

   defined to be expressions of the form 

 

   where each ci is in F, and cd ≠ 0. 
 

We call d the degree of the polynomial. 

Also, the expression 0 is a polynomial. 

   (By convention, we call its degree −∞.) 

cd x
d + cd−1 x

d−1 + ··· + c2 x
2 + c1 x + c0 
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Adding and multiplying polynomials 

You can add and multiply polynomials. 

Example. Here are two polynomials in    

 P(x) = x2 + 5x − 1 

Q(x) = 3x3 + 10x 

P(x) + Q(x) = 3x3 + x2 + 15x − 1 

     = 3x3 + x2 +   4x − 1  

     = 3x3 + x2 +   4x + 10 

Adding and multiplying polynomials 

You can add and multiply polynomials (they are a 

 “ring”  but we‟ll skip a formal treatment of rings) 

Example. Here are two polynomials in       

 P(x) = x2 + 5x − 1 

Q(x) = 3x3 + 10x 

P(x) • Q(x) = (x2 + 5x − 1)(3x3 + 10x) 

    = 3x5 + 15x4 + 7x3 + 50x2 − 10x 

    = 3x5 +   4x4 + 7x3 +   6x2 +      x 

Adding and multiplying polynomials 

Polynomial addition is associative and commutative. 

0 + P(x) = P(x) + 0 = P(x).   

P(x) + (−P(x)) = 0.   

  So (F[x], +) is an abelian group! 

 

Polynomial multiplication is associative and commutative. 

1 • P(x) = P(x) • 1 = P(x). 

Multiplication distributes over addition:   

 P(x) • (Q(x) + R(x)) = P(x) • Q(x) + P(x) • R(x) 

 

If P(x) / Q(x) were always a polynomial,  

then F[x] would be a field!   Alas… 

Dividing polynomials? 

P(x) / Q(x) is not necessarily a polynomial. 

So F[x] is not quite a field. 

 (It‟s an “integral domain”) 

Same with ℤ, the integers:  

 it has everything except division. 

Actually, there are many analogies between F[x] and ℤ. 

• starting point for rich interplay between algebra, arithmetic,  

 and geometry in modern mathematics 

Dividing polynomials? 

ℤ has the concept of “division with remainder”: 

Given a,b∈ℤ, b≠0, can write 

a = q•b + r,   

where r is “smaller than” b. 

F[x] has the same concept: 

Given A(x),B(x)∈F[x], B(x)≠0, can write 

A(x) = Q(x)•B(x) + R(x),   

where deg(R(x)) < deg(B(x)).   

“Division with remainder” for polynomials 

Example: Divide 6x4+8x+1 by 2x2+4 in  

2x2+4 6x4+8x+1 

3x2 

6x4+x2 − 

−x2+8x+1 

+5 

−x2+9 − 

8x+3 

Check: 

6x4+8x+1  

= (3x2+5)(2x2+4)+(8x+3) 
 

(in              ) 
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Integers  ℤ 

“division”:   

    a = qb+r,   |r| < |b| 

“division”:   

    A(x) = Q(x)B(x)+R(x), 

 deg(R) < deg(B) 

can use Euclid‟s Algorithm  

to find GCDs 

can use Euclid‟s Algorithm  

to find GCDs 

Polynomials F[x] 

“size” = abs. value “size” = degree 

p is “prime”:  

no nontrivial divisors 

P(x) is “irreducible”:  

no nontrivial divisors 

ℤ mod p: 

a field iff p is prime 

F[x] mod P(x): 

a field iff P(x) is irreducible 

(with |F|deg(P) elements) 

The field with 4 elements 

Degree < 2 polynomials {0,1,x,1+x}  F2[x] 

• 0 1 a b 

0 0 0 0 0 

1 0 1 a b 

a 0 a b 1 

b 0 b 1 a 

Addition and multiplication modulo 1+x+x2 

+ 0 1 a b 

0 0 1 a b 

1 1 0 b a 

a a b 0 1 

b b a 1 0 

a=x 

b=1+x 

Enough algebraic theory. 
 

Let‟s play with polynomials! 

Evaluating polynomials 

Given a polynomial P(x) ∈ F[x], 

P(a) means its evaluation at element a. 

E.g., if  P(x) = x2+3x+5  in          

P(6) = 62+3·6+5 = 36+18+5 = 59 = 4 

P(4) = 42+3·4+5 = 16+12+5 = 33 = 0 

Definition:     is a root of P(x) if P() = 0. 

Polynomial roots 

Theorem:  

Let P(x) ∈ F[x] have degree 1. 

Then P(x) has exactly 1 root. 

Proof: 

Write P(x) = cx + d   (where c≠0). 

Then P(r) = 0 ⇔   cr + d = 0 

   ⇔          cr = −d 

   ⇔            r = −d/c. 

Polynomial roots 

Theorem:  

Let P(x) ∈ F[x] have degree 2. 

Then P(x) has… how many roots?? 

E.g.:    x2+1… 

# of roots over              : 1  (namely, 1) 

# of roots over              : 0 

# of roots over              : 2  (namely, 2 and 3) 

# of roots over              : 0 

# of roots over              : 2  (namely, i and −i) 
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The single most important theorem  

about polynomials over fields: 

A nonzero degree-d  

polynomial has  

at most d roots. 

Theorem: Over a field, for all d ≥ 0, a nonzero  

degree-d polynomial P has at most d roots. 

Proof by induction on d∈ℕ: 

Base case:  If P(x) is degree-0 then P(x) = a for some a≠0.  

  This has 0 roots. 
 

Induction:    

     Assume true for d ≥ 0.  Let P(x) have degree d+1. 

     If P(x) has 0 roots: we‟re done!  Else let b be a root. 

     Divide with remainder: P(x) = Q(x)(x−b) + R(x).  (∗) 

     deg(R) < deg(x−b) = 1, so R(x) is a constant.  Say R(x)=r. 

     Plug x = b into (∗):  0 = P(b) = Q(b)(b−b)+r = 0+r = r. 

     So P(x) = Q(x)(x−b).  Now, deg(Q) = d.  ∴ Q has ≤ d roots. 

     ∴ P(x) has ≤ d+1 roots, completing the induction. 

Recall our  

convention: 

deg(0) = - ∞ 

A useful corollary 

Theorem: Over a field F, for all d ≥ 0,  

degree-d polynomials have at most d roots. 

Corollary: Suppose a polynomial R(x)  F[x]  

is such that 

(i) R has degree ≤ d and  

(ii) R has > d roots 

Then R must be the 0 polynomial 

I’ve used the above corollary several times in my research. 

Theorem: 

Reminder: 

This is only true over a field. 

 

E.g., consider P(x) = 3x  over Z6. 

 

It has degree 1, but 3 roots:  0, 2, and 4. 

Over a field, degree-d polynomials have at most d roots. 

Interpolation 

Say you‟re given a bunch of “data points” 

a1 

b1 

(a2,b2) 
(a3,b3) 

(a4,b4) 

(a5,b5) 

Can you find a (low-degree)  

polynomial which “fits the data”? 

Interpolation 

Let pairs (a1,b1), (a2,b2), …, (ad+1,bd+1) 

from a field F be given (with all ai‟s distinct). 

Theorem:   

 There is exactly one polynomial P(x)  

    of degree at most d such that  

 P(ai) = bi for all i = 1…d+1. 

E.g., through 2 points there is a unique linear polynomial. 
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Interpolation 

There are two things to prove. 

1. There is at least one polynomial of degree 

≤ d passing through all d+1 data points. 

2. There is at most one polynomial of degree 

≤ d passing through all d+1 data points. 

Let‟s prove #2 first. 

Interpolation 

Theorem: Let pairs (a1,b1), (a2,b2), …, (ad+1,bd+1) 

from a field F be given (with all ai‟s distinct). 

Then there is at most one polynomial P(x) 

of degree at most d with P(ai) = bi for all i. 

 Proof: Suppose P(x) and Q(x) both do the job. 

Let R(x) = P(x)−Q(x).   

Since deg(P), deg(Q) ≤ d we must have deg(R) ≤ d. 

But R(ai) = bi−bi = 0 for all i = 1…d+1. 

Thus R(x) has more roots than its degree. 

∴ R(x) must be the 0 polynomial, i.e., P(x)=Q(x). 

 

Interpolation 

Now let‟s prove the other part, 

that there is at least one polynomial. 

Let pairs (a1,b1), (a2,b2), …, (ad+1,bd+1) 

from a field F be given (with all ai‟s distinct). 

Then there exists a polynomial P(x) of  

degree at most d with P(ai) = bi for all i. 

Theorem: 

Interpolation 

The method for constructing the polynomial 

is called Lagrange Interpolation. 

Discovered in 1779  

by Edward Waring. 

Rediscovered in 1795  

by J.-L. Lagrange. 

Lagrange Interpolation 

a1 

a2 

a3 

··· 

ad 

ad+1 

b1 

b2 

b3 

··· 

bd 

bd+1 

Want P(x) 
(with degree ≤ d)  

such that  P(ai) = bi  ∀i. 

Lagrange Interpolation 

a1 

a2 

a3 

··· 

ad 

ad+1 

1 

0 

0 

··· 

0 

0 

Can we do this special case? 

Promise:  once we solve this special case, 

     the general case is very easy. 
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Lagrange Interpolation 

a1 

a2 

a3 

··· 

ad 

ad+1 

1 

0 

0 

··· 

0 

0 

Lagrange Interpolation 

a1 

a2 

a3 

··· 

ad 

ad+1 

1 

0 

0 

··· 

0 

0 

Idea #1:  P(x) = (x−a2)(x−a3)···(x−ad+1) 

Degree is d.  ✔ 

P(a2) = P(a3) = · · · = P(ad+1) = 0.  ✔ 

P(a1) = (a1−a2)(a1−a3)···(a1−ad+1).  ?? 

Just divide P(x) 

by this number. 

Lagrange Interpolation 

a1 

a2 

a3 

··· 

ad 

ad+1 

1 

0 

0 

··· 

0 

0 

Idea #2: 

Denominator 

is a nonzero 

field element 

Numerator  

is a deg. d  

polynomial 

Call this the selector polynomial for a1. 

Lagrange Interpolation 

a1 

a2 

a3 

··· 

ad 

ad+1 

0 

1 

0 

··· 

0 

0 

Great!  But what about this data? 

Lagrange Interpolation 

a1 

a2 

a3 

··· 

ad 

ad+1 

0 

0 

0 

··· 

0 

1 

Great!  But what about this data? 

Lagrange Interpolation 

a1 

a2 

a3 

··· 

ad 

ad+1 

b1 

b2 

b3 

··· 

bd 

bd+1 

Great!  But what about this data? 
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Lagrange Interpolation – example 

Over Z11, find a polynomial P of degree ≤ 2 

such that P(5) = 1, P(6) = 2, P(7) = 9. 

S5(x) = 6 (x−6)(x−7) 

S6(x) = -1 (x−5)(x−7) 

S7(x) = 6 (x−5)(x−6) 

P(x) = 1 S5(x) + 2 S6(x) + 9 S7(x) 

P(x) = 6(x2−13x+42) − 2(x2−12x+35) + 54(x2−11x+30) 

P(x) = 3x2+x+9 

The Chinese Remainder Theorem had a 

very similar proof 

Not a coincidence:  

algebraically, integers & polynomials  
share many common properties 

Lagrange interpolation is the exact analog of 
Chinese Remainder Theorem for polynomials. 

Let   mi = N/ni 

x = a1 T1  + a2 T2  + ... +  ak Tk 

i‟th “selector” number: Ti = (mi
-1 mod ni) mi  

Recall: Interpolation 

Let pairs (a1,b1), (a2,b2), …, (ad+1,bd+1) 

from a field F be given (with all ai‟s distinct). 

Theorem:  

 There is a unique degree d polynomial P(x)  

    satisfying  P(ai) = bi for all i = 1…d+1. 

A linear algebra view  

Let p(x) = p0 + p1x + p2 x
2 + … + pd x

d 

Need to find the coefficient vector (p0,p1,…,pd)  

p(a) = p0 + p1 a + …+ pd a
d 

         = 1  p0 + a  p1 + a2 p2 + … + ad pd 

 
Thus we need to solve: 

Lagrange interpolation 
 

Thus can recover coefficient vector as  

The columns of M-1  are given by the coefficients 

of the various “selector” polynomials we constructed 

in Lagrange interpolation. 
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Representing Polynomials 

Let P(x)∈F[x] be a degree-d polynomial. 

Representing P(x) using d+1 field elements: 

1. 

2. 

List the d+1 coefficients. 

Give P‟s value at d+1 different elements. 

Rep 1 to Rep 2:   

Rep 2 to Rep 1:   

Evaluate at d+1 elements 

Lagrange Interpolation 

Group Theory: 

   Abelian 

   Order theorem 

   Isomorphism 

   Subgroups 

Number Theory: 

    Euler‟s theorem  

    Chinese Remainder theorem 
 

Fields: 

   Definitions 

   Examples 

   Finite fields of prime order 
 

 

Polynomials: 

   Degree-d polys have ≤ d roots. 

   Polynomial division with remainder 

   Lagrange Interpolation 

    

Study Guide 


