15-251: Great Theoretical Ideas in Computer Science Recap' Definition of a group
Lecture 15

October 16, 2014 G is a “group under operation e” if:

0. [Closure] G is closed under e

Algebra ll: ie,asbecG  VabeG
Fields , Po Iyn omials 1. [Associativity] Operation e is associative:

iie., ae(bec)=(aeb)ec VabceG

2. [Identity] There exists an element eeG
(called the “identity element”) such that
aee=a, eea=a VaeG

3. [Inverse] For each a€eG there is an element a~'eG
(called the “inverse of a”) such that
aea'=e a'lea=e

Examples of groups Symmetries of undirected cycle:

e dihedral group
Any group of transformations is a group.

E.g., the ‘mattress group’ (AKA Klein 4-group)

identity element is Id -

R1=R { Id, [y, Iy, I3, Iy,

_1 -_—
5_1: E f1, T, fa, T4, f5)

Symmetries of directed cycle: Abelian groups
Cyclic group

In a group we do NOT NECESSARILY have

ae b=bea

Definition:
“a,b € G commute” means ab = ba.

Definition:

I tabl d I . . L .
@ group 'able, every row and every column A group is said to be abelian if all pairs a,b € G

is a permutation of the group elements
Follows because () ab=ac=Db=c commute.
(i)ba=ca=b=c




Order of a group element

Let G be afinite group. Let aeG.
Definition: The order of X, denoted ord(a), is the
smallest m = 1 such that a™ = 1.

Note that a, a2, a3, ..., a™ 1, am=1 all distinct.

Cyclic groups
A finite group G of order n is cyclic if
G={e,b,b?,...,b™1} for some group element b

In such a case, we say b “generates” G,
or b is a “generator” of G.

Examples:
*(Z, 1) (1 is a generator)

2 C, (Rotg, is a generator)

Non-examples: Mattress group;
any non-abelian group.

Subgroups
Q: Is (Even integers, +) a group?

A:Yes. Itis a “subgroup” of (Z,+)

Definition: Suppose (G ,e) is a group.
If Hc G, and if (H,e) is also a group,
then H is called a subgroup of G.

To check H is a subgroup of G, check:
1. Hisclosed under e
2. eeH
3. IfheHthenh'eH
* (3 condition follows from 1,2 if H is finite)

Order Theorem: Forevery a € G,
ord(a) divides |G|.

Corollary: al®l=1 for all aeG.

Corollary (Euler’s Theorem): Fora e Z,", a®™ =
That s, if gcd(a,n)=1, then a®™ = 1 (mod n)

Corollary (Fermat'’s little theorem):
For prime p, if gcd(a,p)=1, then
aPl=1 (mod p)

How many generators does
(Z,, +) have?

Answer: ®(n)

b generates Z, < 3 a s.t. ba=1 (mod n)
(ba = b+b+...+b (a times))

Same holds for any cyclic group
with n elements

Examples

Every G has two trivial subgroups: {e}, G
Rest are called “proper” subgroups

Suppose k, 1 < k < n, divides n.

Q1. Is ({o, k, 2k, 3k, ..., (n/k-1)k3, +,) subgroup of (Z,,,+,) ?

Yes!

Q2. Is (Z,, +) a subgroup of (Z,, +,)?

No! it doesn’t even have the same operation

Q3. Is (Z, +,) a subgroup of (Z,,, +,)?

No! Z, is not closed under +,




Lagrange’s Theorem

Theorem: If G is a finite group, and H is a subgroup then
|H| divides |G].

Proof similar to order theorem.

Corollary (order theorem): If x e G, then ord(x) divides |G|.

Proof of Corollary:
Consider the set T, = (x, X, X3, ...)
(i) ord(x) = | T,|
(i) (T,, ®) is a subgroup of (G,e) (check!)

It was nice meeting you, groups!

Number Theory
Interlude II

Claim: gcd(a,b) = d (the minimum positive
integer expressible as ra+sb)

1. gcd(a,b) divides both a and b, and
hence also divides d. So d > gcd(a,b)

2. d divides both a and b, and hence d < gcd(a,b)
Let's show d | a.
Writea=qd +t,with0<t<d.

t=a-qdis also expressible as a
combinationr’a + s’ b.
Contradicts minimality of d.

A useful corollary

If G is a finite group and
H is a proper subgroup of G, then |H| < |G|/2

SENTEN
G = ({0,1}", +) (+ : coordinate-wise addition mod 2)

H = {(X;,X5,....Xn) I Xy #XoF ... + X, = 0}
H is a proper subgroup (check!)

So [H] < 2™
(in fact, in this case, |H| = 2™1)

Bezout’s identity

Let a,b be arbitrary positive integers.
There exist integers r and s such that

ra+sb=gcd(ab)

A non-algorithmic proof:

» Consider the set L of all positive integers that can
be expressed as r a + s b for some integers r,s.

L is non-empty (eg. a € S)

* So L has a minimum element d
(well-ordering principle < principle of induction)

Claim: d = gcd(a,b)

Extended Euclid & Unique Factorization

Lemma: If gcd(a,b)=1 and a | bc, then a | c.

Proof: Letr,sbesuchthatra+sb=1
rac+sbc=c

albcanda|rac,soajc. |

Corollary: If pis a prime and p | g, d, ... Oy,
then p must divide some g

If the g;'s are also prime, then p = g; for some i.

Unique prime factorization follows from this!




Extended Euclid and Chinese Remaindering Extended Euclid and Chinese Remaindering

Ty ALY ICWISE O
Ulien, Tor sl inbegers &g, ..oy there exies an inbeger 2 solving the

congruent modulo v

Further, all sodations r are congruent
Uniqueness of solutions modulo N
Proof for k=2:

If X,y are two solutions, then n; divides x-y, for i=1,2,...k
Take x = a; (N, mod n,) n, + a, (n;* mod n,) n;

Since the n; are coprime, this means the product . ) _
N=n,n, ... n, divides (x-y), thus x =y (mod N) Can compute x efficiently (by computing modular inverses)

Extended Euclid and Chinese Remaindering

T BIT 1SR SO

Field Theory

Further, all solations & ame congruent modulo N

For arbitrary k: Let m; =N/n;  Note gcd(m;,n;) =1
n; | m; forj # i

Take x = a; (m;* mod n;) m,; + a, (M, mod n,) m, +

.... + 3, (m: mod ny) m,

A group is a set with a single binary operation.

Find out about the wonderful world of Fxe Number-theoretic sets often have more than
where two equals zero, plus is minus, one operation defined on them.

and squaring is a linear operator! .
q g P For example, in Z, we can do both addition and

multiplication.
~ Richard Schroeppel Same in Z, (we can add and multiply modulo n)

For reals R or rationals @, we can also divide
(inverse operation for multiplication).




Fields Field — formal definition
Informally, it's a place where you can Afigld is a set F with two Example:
add, subtract, multiply, and divide. binary operations, Fi =7
called + and -. G T3
Examples: Real numbers R (F,+) an abelian group, with
Rational numbers Q identity element called O
Complex numbers C
ZP

Integers mod prime (F\{0},*) an abelian group,

(Why?) S
identity element called 1

NON-examples: integers Z ShiSon Distributive Law holds:
Non-negative reals R* subtraction?? as(b+c) = a*b + asc

Example Finite fields

Quadratic “number field” Some familiar infinite fields: @, R, C (now Q(v2))

2} = [ .
Q(2)={a+bN2:abe @} Finite fields we know: Z, aka Fy for p a prime

. ‘ ‘ Is there a field with 2 elements? Yes
Addition: (a + b V2) + (c + d V2) = (a+c) + (b+d) V2 _ _
Is there a field with 3 elements? Yes

Multiplication: Is there a field with 4 elements? Yes

(a+b+2) e (c+dv2) = (ac+2bd) + (ad+bc) V2

Exercise: Prove above defines a field.

Finite fields

Is there a field with 2 elements?
Is there a field with 3 elements?

. . .
Evariste Galois (1811-1832) Is there a field with 4 elements~

. Is there a field with 5 elements?
introduced the concept of a ) )
Is there a field with 6 elements?

finite field (also known as a ) .
Is there a field with 7 elements?

Galois Field in his honor . .
IS F in ) Is there a field with 8 elements?
Is there a field with 9 elements?

Is there a field with 10 elements?




Finite fields

Theorem (which we won'’t prove):
There is a field with q elements
if and only if g is a power of a prime.

Up to isomorphism, it is unique.

That is, all fields with g elements have the
same addition and multiplication tables,
after renaming elements.

This field is denoted  F; (also GF(q))

Polynomials

Polynomials

Informally, a polynomial is an expression

that looks like this:
c R\x\
6x3-2.3x2+5x +4.1

Actually, coefficients can come from any field.

Can allow multiple variables, but we won't.

Set of polynomials with variable x and
coefficients from field F is denoted F[X].

Finite fields

Question:

If g is a prime power but not just a prime,
what are the addition and multiplication
tablesof Fq?

Answer:
It's a bit hard to describe.

We'll tell you later, but for 251’s purposes,
you only need to know about prime q.

Polynomials

Informally, a polynomial is an expression
that looks like this:

6x3-2.3x2+5x +4.1

/

x is a symbol, called the variable

the ‘numbers’ standing next to
powers of x are called the coefficients

Polynomials — formal definition

Let F be a field and let x be a variable symbol.

F[x] is the set of polynomials over F,
defined to be expressions of the form
CaXd+Cyq XIT+ o+, X2+ ¢y X+ C

where each ¢;isin F, and ¢y # 0.

We call d the degree of the polynomial.

Also, the expression 0 is a polynomial.

(By convention, we call its degree —«.)



Adding and multiplying polynomials

You can add and multiply polynomials.

Example. Here are two polynomials in F11[x]

P(x) =x?+5x -1
Q(x) = 3x3 + 10x

P(x) + Q(x) = 3x® + x2 + 156x — 1
=3 +x2+ 4x-1
=3x3+x2+ 4x+10

Adding and multiplying polynomials

Polynomial addition is associative and commutative.
0+ P(x) = P(x) + 0 = P(x).
P(x) + (-P(x)) = 0.

So (F[x], +) is an abelian group!

Polynomial multiplication is associative and commutative.

1 P(x) =P(x) * 1 =P(x).
Multiplication distributes over addition:
P(x) « (Q(x) + R(x)) = P(x) * Q(x) + P(x) * R(x)

If P(x) / Q(x) were always a polynomial,
then F[x] would be a field! Alas...

Dividing polynomials?

Z has the concept of “division with remainder”:
Given a,b€eZ, b#0, can write

a=qeb+r,
where r is “smaller than” b.

F[x] has the same concept:

Given A(x),B(x)eF[x], B(x)#0, can write
A(x) = Q(x)*B(x) + R(x),
where deg(R(x)) < deg(B(x)).

Adding and multiplying polynomials

You can add and multiply polynomials (they are a
“ring” but we’ll skip a formal treatment of rings)

Example. Here are two polynomials in F11[x]

P(x) =x2 +5x - 1
Q(x) = 3x® + 10x

P(x) * Q(x) = (x? + 5x — 1)(3x® + 10x)
= 3x° + 15x4 + 7x3 + 50x2 — 10x
=3x°+ 4x*+7x3+ 6x2+ X

Dividing polynomials?

P(x) / Q(x) is not necessarily a polynomial.

So F[x] is not quite a field.

(It's an “integral domain”)

Same with Z, the integers:
it has everything except division.

Actually, there are many analogies between F[x] and Z.

® starting point for rich interplay between algebra, arithmetic,
and geometry in modern mathematics

“Division with remainder” for polynomials

Example: Divide 6x*+8x+1 by 2x2+4 in F11[x]

3x2+5

2X2+4 | 6x4+8x+1

- BX+x?

Check:

6x4+8x+1
= (3x2+5)(2x2+4)+(8x+3)

—y2
x“+8x+1 (in F11[x])

— —x249

8x+3




Integers Z

“size” = abs. value
“division”:
a=gb+r, |rl<|b|
can use Euclid’s Algorithm

to find GCDs

p is “prime”:
no nontrivial divisors

Z mod p:
a field iff p is prime

Polynomials F[x]

“size” = degree

“division”:
AX) = QX)B(X)+R(x),
deg(R) < deg(B)

can use Euclid’s Algorithm
to find GCDs

P(x) is “irreducible”:
no nontrivial divisors

F[x] mod P(x):
a field iff P(x) is irreducible
(with |F|99) elements)

Enough algebraic theory.

Let’s play with polynomials!

Polynomial roots

Theorem:

Let P(x) € F[x] have degree 1.
Then P(x) has exactly 1 root.

Proof:

Write P(x) = cx + d

ThenP(r)=0

(where c#0).
& cr+d=0

r =—-d/c.

The field with 4 elements

Degree < 2 polynomials {0,1,x,1+x} < [F,[X]

Addition and multiplication modulo 1+x+x?

Evaluating polynomials
Given a polynomial P(x) € F[x],
P(a) means its evaluation at element a.

E.g., if P(X) = x2+3x+5 in F11[x]
P(6) = 62+3:6+5 = 36+18+5 =59 = 4

P(4) = 4243.4+5 = 16+12+5 =33 =0

Definition: a is a root of P(x) if P(a) = 0.

Polynomial roots

Theorem:

Let P(x) € F[x] have degree 2.
Then P(x) has... how many roots??

E.g. X2+1...
#of rootsover Fa[x] : 1 (namely, 1)
#of rootsover F3[x] : O
# of roots over F5[x] : 2 (namely, 2 and 3)
#of roots over E[x] : O

# of roots over ©[x] : 2 (namely, i and —i)




The single most important theorem
about polynomials over fields:

A nonzero degree-d
polynomial has
at most d roots.

A useful corollary

Theorem: Over a field F, for all d 2 0,
degree-d polynomials have at most d roots.

Corollary: Suppose a polynomial R(x) € F[x]
is such that

() R has degree <d and
(i) R has >d roots

Then R must be the 0 polynomial

I’'ve used the above corollary several times in my research.

Interpolation

Say you’re given a bunch of “data points”

(a41b4)

Can you find a (low-degree)
polynomial which “fits the data”?

Theorem: Over a field, for all d = 0, a nonzero
degree-d polynomial P has at most d roots.

Proof by induction on deN: Recall our

Base case: If P(x) is degree-0 then P(x) = a for some a#0. convention:
; deg(0) = - e
This has 0 roots.

Induction:
Assume true for d = 0. Let P(x) have degree d+1.
If P(x) has 0 roots: we're done! Else let b be a root.
Divide with remainder: P(x) = Q(x)(x-b) + R(x). ()
deg(R) < deg(x-b) = 1, so R(x) is a constant. Say R(x)=r.
Plug x = b into (x): 0=P(b) = Q(b)(b—b)+r =0+r=r.
So P(x) = Q(x)(x—b). Now, deg(Q) =d. -~ Q has < d roots.
~ P(x) has < d+1 roots, completing the induction.

Theorem:

Over a field, degree-d polynomials have at most d roots.
Reminder:

This is only true over a field.

E.g., consider P(x) = 3x over Zg.

It has degree 1, but 3 roots: 0, 2, and 4.

Interpolation

Let pairs (a;,by), (82,0,), ..., (Ag+1.04+1)
from a field F be given (with all s distinct).

Theorem:
There is exactly one polynomial P(x)
of degree at most d such that
P(a) = b;foralli=1...d+1.

E.g., through 2 points there is a unique linear polynomial.




Interpolation

There are two things to prove.

1. There is at least one polynomial of degree
< d passing through all d+1 data points.

2. There is at most one polynomial of degree
< d passing through all d+1 data points.

Let’s prove #2 first.

Interpolation

Now let’s prove the other part,
that there is at least one polynomial.

Theorem:
Let pairs (a3,by), (a2.0,), ..., (g+1.0441)
from a field F be given (with all a’s distinct).
Then there exists a polynomial P(x) of
degree at most d with P(a;) = b; for all i.

Lagrange Interpolation

a; b,
a, b,
as b,

ay by
Qg1 a1
Want P(x)

(with degree < d)
such that P(a) = b; Vi.

Interpolation
Theorem: Let pairs (a;,b,), (a,,0,), ..., (Qgs1,04+1)
from a field F be given (with all a’s distinct).
Then there is at most one polynomial P(x)
of degree at most d with P(a;) = b; for all i.

Proof: Suppose P(x) and Q(x) both do the job.

Let R(x) = P(x)-Q(x).

Since deg(P), deg(Q) < d we must have deg(R) < d.
But R(a;) = bi-b; =0 foralli=1...d+1.

Thus R(x) has more roots than its degree.

= R(x) must be the 0 polynomial, i.e., P(x)=Q(X).

Interpolation

The method for constructing the polynomial
is called Lagrange Interpolation.

Discovered in 1779 g

by Edward Waring. ’ Y
I
Rediscovered in 1795
by J.-L. Lagrange.

Lagrange Interpolation

a, 1
a,
as

ad
ad+1
Can we do this special case?

Promise: once we solve this special case,
the general case is very easy.

10



Lagrange Interpolation

1

Lagrange Interpolation

Numerator Denominator
isadeg. d is a nonzero
polynomial field element

Idea #2:

(x—azlx—az)--(x—age]
S1(x) = J Y KRR ¢ i+1)

(a1 —azMa1 —a3)-- (a1 — ag+1)

Call this the selector polynomial for a,.

Lagrange Interpolation

a;
a,
as

ay 0
ad+1 1
Great! But what about this data?

(x—a1)(x—az)(x—ay)
Sas1(x) = - - Lo . .

(8d+1 —@1)(8g41 — 82) - - (8ge1 — aa)

Lagrange Interpolation

Just divide P(x)
by this number.

0
Ag+1 0

ldea #1: P(x) = (X—a,)(x—ag) " (X—ag4.1)
Degreeisd. v
P(a)) =P(ag) = - - =P(ag:y) =0. ¢

P(ay) = (1-a)(a1-a3) - (81-ags1)- 27

Lagrange Interpolation

0
Qg+ 0

Great! But what about this data?

S2(x) = (x —a1)(x —a3)--- (X —ag+1)
S (az —ai1llaz —az):++(az —ad+1)

Lagrange Interpolation

a; b,
a, b,
as b,

a4 by

ad+1 bd+1

Great! But what about this data?

by -Sa(x) + bz - Sa(x) + -+ + b1 - Sas1(x]

11



Lagrange Interpolation — example The Chinese Remainder Theorem had a

Over Z,,, find a polynomial P of degree < 2 very similar proof

such that P(5) = 1, P(6) = 2, P(7) = 9.
Not a coincidence:
algebraically, integers & polynomials
Se(X) = (x=3)(x-7) share many common properties
S7(X) = © (x=5)(x-6)

S5(x) = (x=6)(x-=7)

P(X) = 1 Se(X) + 2 Se(X) + 9 S-(X) Lagrange interpolation is the exact analog of

Chinese Remainder Theorem for polynomials.
P(X) = 6(x2-13x+42) - 2(x2-12x+35) + 54(x2~11x+30)

P(x) = 3x?+x+9

.| hen, for ..||. bigers iy g s g, ot o lata 2 Inteny Recall: Interpolation

vt Ol Al s e rinEETs
Let pairs (a;,by), (82,b), ..., (@gs1,04+1)
from a field F be given (with all a’s distinct).
nlations 1 are congruent i = 1%, n Theorem:

There is a unique degree d polynomial P(x)

Let m;=N/n; satisfying P(a) = b, for alli = 1...d+1.

i'th “selector” number: T, = (m* mod n;) m,

x=a; T, +a, T, +..+ a Ty

A linear algebra view ..Lagrange interpolation

- 10w G 4 1) Vandermonde matrix

Let p(x) = pg + P1X + Py X2 + ... + py x°
Need to find the coefficient vector (py Py,...,Pg)

p(@)=po+pra+..+pga
=1-po+a-p+a%py+...+adpy
< invertible
Thus we need to solve:

& The determinant of M 18 wonzees wlwi '8 are Jdiscipes

Thus can recover coefficient vector as  [TiRiE it

The columns of M are given by the coefficients
of the various “selector” polynomials we constructed
in Lagrange interpolation.




Representing Polynomials

Let P(x)eF[x] be a degree-d polynomial.

Representing P(x) using d+1 field elements:

1. List the d+1 coefficients.

2. Give P’s value at d+1 different elements.

Rep 1 to Rep 2:

Rep 2 to Rep 1:

Evaluate at d+1 elements

Lagrange Interpolation

Study Guide

Group Theory:
Abelian
Order theorem
Isomorphism
Subgroups

umber Theory:
Euler’s theorem
Chinese Remainder theorem

ields:

Definitions

Examples

Finite fields of prime order

Polynomials:
Degree-d polys have < d roots.
Polynomial division with remainder
Lagrange Interpolation
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