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Matching 

Definition. A subset of edges is a matching if no 
two edges have a common vertex (mutually 
disjoint). 

Definition. A maximum 
matching is a matching with 
the largest possible number 
of edges 

The Hungarian algorithm for bipartite graphs, and 
the Blossom algorithm for general graphs. 

Vertex Cover 

This is a set of vertices such that each edge of 
the graph is incident to at least one vertex of 
the set.   

A minimum vertex cover is a vertex cover of 
smallest possible size.  A NP-hard problem.   

Application: monitoring a worm propagation.    

Max-matching vs. Min-cover 

Theorem. The largest number of edges in a 
matching does not exceed the smallest number 
of vertices in a cover   

Proof.  
Since each vertex in a cover C incident with at 
most one edge in matching M, then  C ≥ M.  

max-matching is in P 
min-cover is in NP 

Max-matching vs. Min-cover 

Theorem (König, 1931). If G is a bipartite graph, 
then the max-matching is equal to the min-
cover.  
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Dating for  
Computer Scientists 

The Stable Marriage 
Problem 

There are n men and n women. 
 

Each one has a complete ordered preference 
list for those of the other sex. 

The goal is to pair the men with the women. 
Does a matching exist? 
What criteria to use? 

1 – 2 4 1 3 
2 – 3 1 4 2 
3 – 2 3 1 4 
4 – 4 1 3 2 

1 – 2 1 4 3 
2 – 4 3 1 2 
3 – 1 4 3 2 
4 – 2 1 4 3 

Men’s preferences Women’s preferences 

Does a matching exist? 

It’s a complete bipartite graph 

every man-woman edge is present 

so clearly there’s a perfect matching 

by Hall’s Theorem 

What criteria to use? 

More Than One Notion of What 
Constitutes A “Good” Pairing 

Maximizing total satisfaction  

Maximizing the minimum satisfaction 

Minimizing maximum difference in mate ranks 

Maximizing people who get their first choice 

We will ignore the issue of 
what is “best”!  

Unstable Pair 

Suppose we pair off all the men and women. 

A pair (M,W) is unstable if M and W like 
each other more than their assigned partners. 

A matching is called unstable if it has a 
unstable pair. 
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A matching of men and women is called stable 
if it contains no unstable pairs. 

Stable Matchings 

1 – 3 1 2 
2 – 3 2 1 
3 – 1 2 3 

Men’s preferences 

1 – 3 2 1 
2 – 2 1 3 
3 – 2 3 1 

Women’s preferences 

Stable matching:  
       (1,2) (2,3) (3,1) 

Unstable matching: 
      (1,3) (2,2) (3,1) 

Find the unstable pair (2,3) 

National Residency Match 

• About 4000 hospitals try to fill 20,000+ 
positions.  

• Students apply and interview at hospitals in 
the fall. 

• In February, students and hospitals state 
their preferences 
– Each student submits rank-order list of hospitals 

– Each hospital submits rank-order list of students 

• Computer algorithm generates an assignment. 

Matching applications galore! 
What are the common features of these problems? 

• Two sides of the market to be matched. 

• Participants on one or both sides care about to whom 
they are matched. 

• For whatever reason, money cannot be used to 
determine the assignment.  

Examples 

 Housing assignment 

 Fraternity/sorority rush 

 MBA course allocation  

 Dating websites 

 College admissions 

 Judicial clerkships 

 Military postings  

 NCAA football bowls 

Given a set of preference lists, 
how do we find a stable matching? 

Wait! We don’t even 
know that such a pairing 

always exists! 

Gale-Shapely Theorem (1965) 

Theorem.  
Stable matching is always possible.  

We will prove this theorem by presenting 
an algorithm that always returns a stable matching. 

Basic principle: Man proposes, woman disposes 

Each unattached man proposes to the 
highest-ranked woman in his list, who has 

not already rejected him. 

If the man proposing to her is better than her 
current mate, the woman dumps her current 
partner, and becomes engaged to the new 

proposer. 

Algorithm: a general idea 

Continue until all men are attached, and we 
get a stable matching. 
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LIST={1,…,n}: list of unattached men. 
cur(m): highest ranked woman in m’s list, who has 
not rejected him. 

Take a man, say, Bob, from the LIST.  
Bob proposes to Alice, where Alice = cur(Bob). 

Stable Matching Algorithm 

If Alice unattached, Bob and Alice are engaged. 

If Alice is engaged to, say, John, but prefers Bob, 
she dumps John, and Bob and Alice are engaged. 
Otherwise, she rejects Bob. 

The rejected man rejoins LIST, and updates his cur. 

Stop when LIST is empty. 

Exercise 

Given these preferences. Find a stable matching. 

Men’s preferences 

1 2 4 1 3 

2 3 1 4 2 

3 2 3 1 4 

4 4 1 3 2 

Women’s preferences 

1 2 1 4 3 

2 4 3 1 2 

3 1 4 3 2 

4 2 1 4 3 

Man proposes, woman disposes 

Exercise 

Given these preferences. Find a stable matching. 

Men’s preferences 

1 2 4 1 3 

2 3 1 4 2 

3 2 3 1 4 

4 4 1 3 2 

Women’s preferences 

1 2 1 4 3 

2 4 3 1 2 

3 1 4 3 2 

4 2 1 4 3 

Algorithm 

1 2 4 

2 3 

3 2 

4  4 1 

For any given instance of the stable marriage 
problem, the Gale-Shapley algorithm terminates, 
and, on termination, the engaged pairs constitute 
a stable matching. 

First we make the following simple observations: 
(1) The engagement always forms a matching. 
(2) Once a woman is engaged, she remains engaged. 
(3) Each new engagement is a better man for her. 

A man cannot be rejected by all women.  Because 
if he is, then all women must be engaged, which is 
impossible. 

The algorithm terminates in at most n2 iterations. 

Remains to prove the matching is always stable. 

Why is it stable? 

Suppose the resulting matching has a unstable 
pair (Mark, Laura). 

Mark must have proposed to Laura at some point. 

During the algorithm, Laura also rejected Mark 
in favor of some she prefers more. 

Laura’s current partner must be more desirable 
than Mark. 

Thus, the pair (Mark, Laura) is not unstable. 

Question about this algorithm 

Notice that our algorithm is asymmetrical.  It 
does not treat men and women the same way. 

Do you think this algorithm is better for the 
men or for the women?   

If you reverse the roles, would it lead to better 
results for the women, or the men? 
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Answer: The algorithm is better for 
the men.  In fact it’s the best possible. 

This algorithm matches every man with his best 
woman!   

Thus, this is the man-optimal algorithm. 

Theorem: Gale-Shapley algorithm finds MAN-
OPTIMAL stable matching! 

Man m is a valid partner of woman w if there 
exists some stable matching in which they are 
married. 
Man-optimal assignment:  every man receives 
best valid partner. 

Theorem: Gale-Shapley algorithm finds 
MAN-OPTIMAL stable matching! 

Proof (by contradiction): Let Tom be paired 
with someone other than his best partner.  
Thus he is the first man rejected by a valid 
partner, say Amy. 

Steve-Lucy 
Tom-Amy 

M 

When Tom is rejected, Amy gets engaged with Steve. 
Amy prefers Steve to Tom. 

Steve not rejected by any valid partner, since Tom is 
the first to be rejected by valid partner. Thus, Steve 
prefers Amy to Lucy. But Amy prefers Steve to Tom. 

Thus (Amy, Steve) is unstable pair in M. 

Theorem:   
 

Gale-Shapley algorithm finds 
 WOMAN-PESSIMAL matching. 

Each woman married to the worst valid partner. 

How would you fix this? 

Woman proposes, man disposes 

Euler and Hamiltonian  cycles 

The Euler cycle 

Is it possible to traverse each of the edges of 
a graph exactly once, starting and ending at 
the same vertex? 

The Euler cycle/path 

Theorem. A connected undirected 
graph has an Euler cycle iff each 
vertex is of even degree. 

Theorem. A connected undirected graph 
has an Euler path (not a cycle)  iff it has 
exactly two vertices of odd degree. 
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The Euler cycle: Fleury’s algorithm 
The Euler theorem does not tells us how to find 
that cycle. 

A B 
Bridge 

You would only want to cross that bridge if you 
know that all edges in A have been traveled. 

The idea behind the algorithm: Don’t burn your 
bridges behind you. 

Fleury’s Algorithm (1883) 

- First make sure that the graph is connected 
and all the vertices have even degree. 
- Pick any vertex at random 
- When you have a choice, always choose to 
travel along an edge that is not a bridge of the 
yet-to-be-traveled part of the graph. 
- Remove that edge. 
- When you cannot travel any more, stop. You 
are done. 

Fleury’s Algorithm 

B 

C D 

E F 

Start at F (arbitrarily) 

A 
B 

C D 

E F 

Travel from F to C 
From F to D is also possible 

A 

B 

C D 

E F 

Travel from C to D 

A 
B 

C D 

E F 

Travel from D to A, but not F 

A 

B 

C D 

E F 

Travel from A to C, but not B 

A 

Fleury’s Algorithm 

B 

C D 

E F 

The rest of moves is forced 

A 

The cycle: F->C->D->A->C->E->A->B->D->F 

Fleury’s Algorithm 

Checking for bridges is expensive, so the 
algorithm might run in O(E2) time. 

The postponing of the use of bridges is really 
the critical feature of this algorithm, and its 
purpose is to avoid becoming trapped in some 
component of G. 

Hierholzer’s Algorithm (1883) 

- First make sure that the graph is connected 
and all the vertices have even degree. 
- Pick any vertex at random 
- Find a cycle C0 using DFS. Remove its edges 
from the graph 
- LOOP: as long as there is an incident edge to 
some vertex in Ck  
 Find a cycle Ck+1 

 Remove edges from the graph 
 Glue two cycles together 
 
This will make a linear time algorithm. 
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The Hamiltonian cycle 

Is it possible to 
traverse each of the 
vertices of a graph 
exactly once, starting 
and ending at the 
same vertex? 

Does the Petersen graph has a Hamiltonian cycle? 

The Hamiltonian cycle 

The terminology came from the 
Icosian puzzle, invented by 
Hamilton in 1857. There was a 
wooden dodecahedron with a peg 
at each vertex labeled with 
different cities. The goal was to 
start at a city and travel along 
edges, visiting each of the other 
19 cities exactly ones. 

This how sir 
Hamilton was trying 
to make some extra 

money… 

The knight’s tour problem 

Can a knight visit all 
squares of a chessboard 
exactly once, starting at 
some square, and by 
making 63 legitimate 
moves?  

The knight’s tour problem is a 
special case of the Hamiltonian 

circle problem. 

The answer is yes! 

This one is nether  
Eulerian not Hamiltonian 

Hamilton versus Euler 

This figure shows a graph that 
has a Euler path and has 
neither Hamiltonian cycle nor 
Hamiltonian paths. 

Showing that a graph is not 
Hamiltonian 

There are three simple rules that based on 
observation that any Hamiltonian cycle must contain 
exactly two edges incident on each vertex. 

Rule 1. If a vertex has degree 2, both edges must 
be on a cycle. 

Rule 2. No cycles can be formed until all the 
vertices have been visited 

Rule 3. Once we use two edges at a vertex, all other 
(unused) incident edges must be removed from 
consideration. 

Showing that a Graph is not 
Hamiltonian 

Rule 3 to c: 
Delete (c,x), (c,g) 

g 

a 

b 

c 

d 
e 

f 

w 

v h 

x 

Rule 3 to e: 
Delete (e,w), (e,g) 

Rule 3 to a: 
Delete (a,v) 
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Showing that a Graph is not 
Hamiltonian 

Each vertex has degree2. 
Rule 1 implies that edges must 
be on every Hamiltonian cycle. 

 

g 

a 

b 

c 

d 
e 

f 

w 

v h 

x 

But these form two 
cycles. Thus, the 
original graph is not 
Hamiltonian. 

The Hamiltonian cycle 

No property is known to efficiently verify existence 
of a Hamiltonian cycle/path for general graphs.   

Here is a sufficient condition: 

Theorem: If G is a simple graph with n ≥ 3 vertices 
such that the degree of every vertex is at least 
n/2, then G has a Hamiltonian cycle. 

Theorem: If G is a simple graph with n ≥ 3 vertices 
such that the deg(u) + deg(v) ≥ n for every pair of 
nonadjacent vertices u and v, then G has a 
Hamiltonian cycle. 

Hamiltonian problem is NP 

This is a well known NP-complete problem 

 

For general graph, we can not find an exactly 
linear time complexity algorithm to find a 
Hamiltonian cycle or path. 

However, if such a path exist we can verify it in 
polynomial  time. Here’s What 

You Need to 
Know… 

Vertex Cover 
Stable Matching 
Gale-Shapely theorem 
Euler Cycle 
Hamiltonian Cycle 


