
1

Great Theoretical Ideas In Computer Science

Victor Adamchik CS 15-251

Carnegie Mellon University

Graphs - III

Outline

Vertex Cover
Stable Matching
Gale-Shapely theorem
Euler Cycle
Hamiltonian Cycle

Matching

Definition. A subset of edges is a matching if no
two edges have a common vertex (mutually
disjoint).

Definition. A maximum
matching is a matching with
the largest possible number
of edges

The Hungarian algorithm for bipartite graphs, and
the Blossom algorithm for general graphs.

Vertex Cover

This is a set of vertices such that each edge of
the graph is incident to at least one vertex of
the set.

A minimum vertex cover is a vertex cover of
smallest possible size. A NP-hard problem.

Application: monitoring a worm propagation.

Max-matching vs. Min-cover

Theorem. The largest number of edges in a
matching does not exceed the smallest number
of vertices in a cover

Proof.
Since each vertex in a cover C incident with at
most one edge in matching M, then C ≥ M.

max-matching is in P
min-cover is in NP

Max-matching vs. Min-cover

Theorem (König, 1931). If G is a bipartite graph,
then the max-matching is equal to the min-
cover.

y4

x1 x2 x3 x4

y1 y2 y3

cover

matching

2

Dating for
Computer Scientists

The Stable Marriage
Problem

There are n men and n women.

Each one has a complete ordered preference
list for those of the other sex.

The goal is to pair the men with the women.
Does a matching exist?
What criteria to use?

1 – 2 4 1 3
2 – 3 1 4 2
3 – 2 3 1 4
4 – 4 1 3 2

1 – 2 1 4 3
2 – 4 3 1 2
3 – 1 4 3 2
4 – 2 1 4 3

Men’s preferences Women’s preferences

Does a matching exist?

It’s a complete bipartite graph

every man-woman edge is present

so clearly there’s a perfect matching

by Hall’s Theorem

What criteria to use?

More Than One Notion of What
Constitutes A “Good” Pairing

Maximizing total satisfaction

Maximizing the minimum satisfaction

Minimizing maximum difference in mate ranks

Maximizing people who get their first choice

We will ignore the issue of
what is “best”!

Unstable Pair

Suppose we pair off all the men and women.

A pair (M,W) is unstable if M and W like
each other more than their assigned partners.

A matching is called unstable if it has a
unstable pair.

3

A matching of men and women is called stable
if it contains no unstable pairs.

Stable Matchings

1 – 3 1 2
2 – 3 2 1
3 – 1 2 3

Men’s preferences

1 – 3 2 1
2 – 2 1 3
3 – 2 3 1

Women’s preferences

Stable matching:
 (1,2) (2,3) (3,1)

Unstable matching:
 (1,3) (2,2) (3,1)

Find the unstable pair (2,3)

National Residency Match

• About 4000 hospitals try to fill 20,000+
positions.

• Students apply and interview at hospitals in
the fall.

• In February, students and hospitals state
their preferences
– Each student submits rank-order list of hospitals

– Each hospital submits rank-order list of students

• Computer algorithm generates an assignment.

Matching applications galore!
What are the common features of these problems?

• Two sides of the market to be matched.

• Participants on one or both sides care about to whom
they are matched.

• For whatever reason, money cannot be used to
determine the assignment.

Examples

 Housing assignment

 Fraternity/sorority rush

 MBA course allocation

 Dating websites

 College admissions

 Judicial clerkships

 Military postings

 NCAA football bowls

Given a set of preference lists,
how do we find a stable matching?

Wait! We don’t even
know that such a pairing

always exists!

Gale-Shapely Theorem (1965)

Theorem.
Stable matching is always possible.

We will prove this theorem by presenting
an algorithm that always returns a stable matching.

Basic principle: Man proposes, woman disposes

Each unattached man proposes to the
highest-ranked woman in his list, who has

not already rejected him.

If the man proposing to her is better than her
current mate, the woman dumps her current
partner, and becomes engaged to the new

proposer.

Algorithm: a general idea

Continue until all men are attached, and we
get a stable matching.

4

LIST={1,…,n}: list of unattached men.
cur(m): highest ranked woman in m’s list, who has
not rejected him.

Take a man, say, Bob, from the LIST.
Bob proposes to Alice, where Alice = cur(Bob).

Stable Matching Algorithm

If Alice unattached, Bob and Alice are engaged.

If Alice is engaged to, say, John, but prefers Bob,
she dumps John, and Bob and Alice are engaged.
Otherwise, she rejects Bob.

The rejected man rejoins LIST, and updates his cur.

Stop when LIST is empty.

Exercise

Given these preferences. Find a stable matching.

Men’s preferences

1 2 4 1 3

2 3 1 4 2

3 2 3 1 4

4 4 1 3 2

Women’s preferences

1 2 1 4 3

2 4 3 1 2

3 1 4 3 2

4 2 1 4 3

Man proposes, woman disposes

Exercise

Given these preferences. Find a stable matching.

Men’s preferences

1 2 4 1 3

2 3 1 4 2

3 2 3 1 4

4 4 1 3 2

Women’s preferences

1 2 1 4 3

2 4 3 1 2

3 1 4 3 2

4 2 1 4 3

Algorithm

1 2 4

2 3

3 2

4 4 1

For any given instance of the stable marriage
problem, the Gale-Shapley algorithm terminates,
and, on termination, the engaged pairs constitute
a stable matching.

First we make the following simple observations:
(1) The engagement always forms a matching.
(2) Once a woman is engaged, she remains engaged.
(3) Each new engagement is a better man for her.

A man cannot be rejected by all women. Because
if he is, then all women must be engaged, which is
impossible.

The algorithm terminates in at most n2 iterations.

Remains to prove the matching is always stable.

Why is it stable?

Suppose the resulting matching has a unstable
pair (Mark, Laura).

Mark must have proposed to Laura at some point.

During the algorithm, Laura also rejected Mark
in favor of some she prefers more.

Laura’s current partner must be more desirable
than Mark.

Thus, the pair (Mark, Laura) is not unstable.

Question about this algorithm

Notice that our algorithm is asymmetrical. It
does not treat men and women the same way.

Do you think this algorithm is better for the
men or for the women?

If you reverse the roles, would it lead to better
results for the women, or the men?

5

Answer: The algorithm is better for
the men. In fact it’s the best possible.

This algorithm matches every man with his best
woman!

Thus, this is the man-optimal algorithm.

Theorem: Gale-Shapley algorithm finds MAN-
OPTIMAL stable matching!

Man m is a valid partner of woman w if there
exists some stable matching in which they are
married.
Man-optimal assignment: every man receives
best valid partner.

Theorem: Gale-Shapley algorithm finds
MAN-OPTIMAL stable matching!

Proof (by contradiction): Let Tom be paired
with someone other than his best partner.
Thus he is the first man rejected by a valid
partner, say Amy.

Steve-Lucy
Tom-Amy

M

When Tom is rejected, Amy gets engaged with Steve.
Amy prefers Steve to Tom.

Steve not rejected by any valid partner, since Tom is
the first to be rejected by valid partner. Thus, Steve
prefers Amy to Lucy. But Amy prefers Steve to Tom.

Thus (Amy, Steve) is unstable pair in M.

Theorem:

Gale-Shapley algorithm finds
 WOMAN-PESSIMAL matching.

Each woman married to the worst valid partner.

How would you fix this?

Woman proposes, man disposes

Euler and Hamiltonian cycles

The Euler cycle

Is it possible to traverse each of the edges of
a graph exactly once, starting and ending at
the same vertex?

The Euler cycle/path

Theorem. A connected undirected
graph has an Euler cycle iff each
vertex is of even degree.

Theorem. A connected undirected graph
has an Euler path (not a cycle) iff it has
exactly two vertices of odd degree.

6

The Euler cycle: Fleury’s algorithm
The Euler theorem does not tells us how to find
that cycle.

A B
Bridge

You would only want to cross that bridge if you
know that all edges in A have been traveled.

The idea behind the algorithm: Don’t burn your
bridges behind you.

Fleury’s Algorithm (1883)

- First make sure that the graph is connected
and all the vertices have even degree.
- Pick any vertex at random
- When you have a choice, always choose to
travel along an edge that is not a bridge of the
yet-to-be-traveled part of the graph.
- Remove that edge.
- When you cannot travel any more, stop. You
are done.

Fleury’s Algorithm

B

C D

E F

Start at F (arbitrarily)

A
B

C D

E F

Travel from F to C
From F to D is also possible

A

B

C D

E F

Travel from C to D

A
B

C D

E F

Travel from D to A, but not F

A

B

C D

E F

Travel from A to C, but not B

A

Fleury’s Algorithm

B

C D

E F

The rest of moves is forced

A

The cycle: F->C->D->A->C->E->A->B->D->F

Fleury’s Algorithm

Checking for bridges is expensive, so the
algorithm might run in O(E2) time.

The postponing of the use of bridges is really
the critical feature of this algorithm, and its
purpose is to avoid becoming trapped in some
component of G.

Hierholzer’s Algorithm (1883)

- First make sure that the graph is connected
and all the vertices have even degree.
- Pick any vertex at random
- Find a cycle C0 using DFS. Remove its edges
from the graph
- LOOP: as long as there is an incident edge to
some vertex in Ck
 Find a cycle Ck+1

 Remove edges from the graph
 Glue two cycles together

This will make a linear time algorithm.

7

The Hamiltonian cycle

Is it possible to
traverse each of the
vertices of a graph
exactly once, starting
and ending at the
same vertex?

Does the Petersen graph has a Hamiltonian cycle?

The Hamiltonian cycle

The terminology came from the
Icosian puzzle, invented by
Hamilton in 1857. There was a
wooden dodecahedron with a peg
at each vertex labeled with
different cities. The goal was to
start at a city and travel along
edges, visiting each of the other
19 cities exactly ones.

This how sir
Hamilton was trying
to make some extra

money…

The knight’s tour problem

Can a knight visit all
squares of a chessboard
exactly once, starting at
some square, and by
making 63 legitimate
moves?

The knight’s tour problem is a
special case of the Hamiltonian

circle problem.

The answer is yes!

This one is nether
Eulerian not Hamiltonian

Hamilton versus Euler

This figure shows a graph that
has a Euler path and has
neither Hamiltonian cycle nor
Hamiltonian paths.

Showing that a graph is not
Hamiltonian

There are three simple rules that based on
observation that any Hamiltonian cycle must contain
exactly two edges incident on each vertex.

Rule 1. If a vertex has degree 2, both edges must
be on a cycle.

Rule 2. No cycles can be formed until all the
vertices have been visited

Rule 3. Once we use two edges at a vertex, all other
(unused) incident edges must be removed from
consideration.

Showing that a Graph is not
Hamiltonian

Rule 3 to c:
Delete (c,x), (c,g)

g

a

b

c

d
e

f

w

v h

x

Rule 3 to e:
Delete (e,w), (e,g)

Rule 3 to a:
Delete (a,v)

8

Showing that a Graph is not
Hamiltonian

Each vertex has degree2.
Rule 1 implies that edges must
be on every Hamiltonian cycle.

g

a

b

c

d
e

f

w

v h

x

But these form two
cycles. Thus, the
original graph is not
Hamiltonian.

The Hamiltonian cycle

No property is known to efficiently verify existence
of a Hamiltonian cycle/path for general graphs.

Here is a sufficient condition:

Theorem: If G is a simple graph with n ≥ 3 vertices
such that the degree of every vertex is at least
n/2, then G has a Hamiltonian cycle.

Theorem: If G is a simple graph with n ≥ 3 vertices
such that the deg(u) + deg(v) ≥ n for every pair of
nonadjacent vertices u and v, then G has a
Hamiltonian cycle.

Hamiltonian problem is NP

This is a well known NP-complete problem

For general graph, we can not find an exactly
linear time complexity algorithm to find a
Hamiltonian cycle or path.

However, if such a path exist we can verify it in
polynomial time. Here’s What

You Need to
Know…

Vertex Cover
Stable Matching
Gale-Shapely theorem
Euler Cycle
Hamiltonian Cycle

