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Great Theoretical Ideas In Computer Science 

Victor Adamchik CS 15-251 

Carnegie Mellon University 

Graphs - II The number of labeled trees on n nodes is nn-2 

Cayley’s Formula 

Put another way, it counts the number of  
spanning trees of a complete graph Kn. 

We proved it by finding a bijection between the 
set of Prϋfer sequences and the set of labeled 
trees. 
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P = 5, 1, 1, 5 

Theorem: In any connected planar graph with at 
least 3 vertices: 

E ≤ 3 V - 6 

Planar Graphs 

Lemma: In any connected planar graph with at 
least 3 vertices: 

3 F ≤ 2 E 

Theorem: In any connected 
planar graph with V vertices, E 
edges and F faces, then   

V – E + F = 2 K5  has 5 vertices and 10 edges, 
thus 

E = 10 ≤ 3x5 – 6 = 9 
which is false, therefore 
K5 is not planar. 

Is K5 planar? 

Theorem: In any connected 
planar graph with V vertices, E 
edges and F faces, then   

V – E + F = 2 

K5 can be embedded on the torus 

Always there is a surface so any graph can be 
embedded to. 

Embedding a graph onto a surface means drawing 
the graph on the surface such that no edges cross.  

Outline 

Bipartite Graphs 
Kuratowski-Wagner Theorem 
Graph Coloring 
Bipartite Matching 
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Bipartite  Graphs 

A graph is bipartite if the 
vertices can be partitioned 
into two sets V1 and V2 such 
that all edges go only between 
V1 and V2 (no edges go from V1 
to V1 or from V2 to V2) 

The complete bipartite graphs Km,n have the 
property that two vertices are adjacent if and 
only if they do not belong together in the 
bipartition subsets. 

Bipartite Graphs 

Theorem. A graph is bipartite iff it does not have 
an odd length cycle. 

Proof. ) 
If it’s bipartite and 
has a cycle, its 
length must be even. 

Bipartite Graphs 

Theorem. A graph is bipartite iff it does not have 
an odd length cycle. 

) (by construction) 
Fix a vertex v. Define two sets of 
vertices 
A ={w V | even length shortest 
edge path from v to w} 
B ={w V | odd length  
shortest edge path from v to w} 
 
 

If x and y from A, they cannot be adjacent. By 
contradiction. There will be an odd length cycle. 
The same argument for B. These sets provide a 
bipartition. 

x y v 

Is a tree always  
a bipartite graph? 

Is K3,3 planar? 

In any connected planar graph 
with at least 3 vertices: 

E ≤ 3 V - 6 

K3,3  has 6 vertices and 9 edges, 
thus 

E = 9 ≤ 3x6 – 6 = 12 
Not conclusive! 

Utility Graph 

Is K3,3 planar? 

 
∑(edge, face) ≤ 2 E, since each 
edge is associated with at most 
2 faces. 

It follows, that 
4 F ≤ 2 E 

and for K3,3 we have 
4F ≤ 18 
F ≤ 4.5 

From Euler’s theorem: V – E + F = 2 
F = 2 + 9 – 6 = 5. Contradiction! 

∑(edge, face)  ≥ 4 F , since 
graph contains no simple 
triangle regions of 3 edges. 
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Theorem. In any bipartite planar graph with at 
least 3 vertices: 

E ≤ 2 V - 4 

Planar Bipartite  Graphs 

Lemma: In any bipartite planar graph with at 
least 3 vertices: 

4 F ≤ 2 E 

The previous example established two simple 
criteria for testing whether a given planar graph 
is bipartite. 

Kuratowski Theorem (1930) 

Theorem. A graph is planar if and only if it 
contains no subgraph isomorphic to a 
subdivision of K5 or K3,3.  

For any graph on V vertices there are efficient 
algorithms for checking if the graph is planar. 
The best one runs in linear time O(V) 

Graph Isomorphism 

Definition. Two simple graphs G and H are 
isomorphic G  H if there is  a vertex 
bijection VH->VG that preserves adjacency 
and non-adjacency structures. 

Does not preserve adjacency 

Does not preserve adjacency 

Graph Isomorphism 

The graph isomorphism problem has no known 
polynomial time algorithm which works for an 
arbitrary graph. 

Subdivision 

Definition. Subdividing an edge means inserting a 
new vertex (of degree two) into this edge. 

The 
Petersen 

graph 
10 vertices 
15 edges 
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Theorem. A graph is planar if and only if it 
contains no subgraph isomorphic to a 
subdivision of K5 or K3,3.  

Petersen 
graph 
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Remove B 
to get a 
subgraph 
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Theorem. A graph is planar if and only if it 
contains no subgraph isomorphic to a 
subdivision of K5 or K3,3.  

b is 
subdividing 

(d,e) 

d 

A 

C D 

E 

a 
b 

c 

e 

b 

C is 
subdividing 
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A is 
subdividing 

(a,E) 

Theorem. A graph is planar if and only if it 
contains no subgraph isomorphic to a 
subdivision of K5 or K3,3.  
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Subdivision and Contraction 

Definition. Subdividing an edge means inserting a 
new vertex (of degree two) into this edge. 

Definition. An edge contraction is an operation 
which removes an edge from a graph while 
simultaneously merging the two vertices it 
used to connect. 

Wagner Theorem 

Theorem. Graph G is planar if and only if it 
contains no subgraph that can be contracted 
to K5 or K3,3.  

Is the Petersen graph planar? 

A coloring of a graph is an assignment of a 
color to each vertex such that no neighboring 

vertices have the same color 

Coloring Graphs 

Theorem : Every simple planar graph has a vertex 
of degree < 6. 

 

Proof.  
 ∑deg(vk) = 2 E ≤ 2 (3 V – 6) 

 

Average degree: 
1/V ∑deg(vk) ≤ 6 – 12/V < 6 

 
Thus, there exists a vertex of degree < 6. 
This technique is called the probabilistic method. 

 

Graph Coloring 
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Theorem: Any simple planar graph can be 
colored with 6 colors. 

Coloring Planar Graphs 

Proof. (by induction on the number of vertices). 

If G has six or less vertices, then the result is  
obvious. Suppose that all such graphs with V-1  
vertices are 6-colorable 

Remove a vertex of degree less than 6, use IH. 

Put it back, since it has at most 5 adjacent  
vertices, we have enough colors.  QED 

Theorem: Any simple planar graph can be 
colored with less than or equal to 5 colors. 

Coloring Planar Graphs 

Proof. (repeat the 6-colors proof) 

Why we can 
assume this? 

If all x1,…,x5 
adjacent,  
we get K5. 

Pick a vertex v of degree 5. Label the  
vertices adjacent  to v as x1, x2, x3, x4 and x5.  
Assume that x4 and x5 are not adjacent to each  
other.  

Contract edges (v, x4), (v, x5). Vertices v, x4, x5  

will be replaced by y, so neighbors of v, x4, x5  
will be neighbors of y. 

We obtain a new graph H with two less vertices.  
By IH the graph H can be colored with 5 colors. 

Next, we assign y-color to x4 and x5 

We give v a color different from all colors used on  
the four vertices x1, x2, x3 and y. QED 

Theorem: Any simple planar graph can be 
colored with less than or equal to 4 colors. 

4 Color Theorem (1976) 

It was proven in 1976 by K. Appel and W. Haken. 
They used a special-purpose computer program. 

Since that time computer scientists have 
been working on developing a formal program proof 
of correctness. The idea is to write code that 
describes not only what the machine should do, but 
also why it should be doing it. 

In 2005 such a proof has been developed by 
Gonthier, using the Coq proof system. 

Graph coloring is computationally  
hard. It is NP-complete to decide if  
a given graph admits k>2 colorings. 

Graph Coloring 

Important case: 3-coloring., also NP-complete,  
even for planar graphs. 

Bipartite Matching 

A graph is bipartite if the vertices can be 
partitioned into two disjoint (also called 
independent) sets V1 and V2 such that all edges go 
only between V1 and V2 (no edges go from V1 to V1 
or from V2 to V2) 

Personnel Problem. You are the boss 
of a company. The company has M 
workers and N jobs. Each worker is 
qualified to do some jobs, but not 
others. How will you assign jobs to 
each worker? 



6 

Bipartite Matching 

Definition. A subset of edges is a matching if no 
two edges have a common vertex (mutually 
disjoint). 

Definition. A maximum matching is a matching with 
the largest possible number of edges 

Bipartite Matching 

Definition. A perfect matching is a matching in 
which each node has exactly one edge incident on it. 
 
A perfect matching is like a bijection, which 
requires that |V1| = |V2 | and in which case its 
inverse is also a bijection. 
 

Hall’s (marriage) Theorem 

Theorem. (without proof) 
Let G be bipartite with V1 and V2. 
For any set SV1, let N(S) denote the set of 
vertices adjacent to vertices in S.  
 
Then, G has a perfect matching if and only if 
  

|S| ≤ |N(S)|  
for every SV1. 

Maximum Matching 

Consider a matching M = {(y1,x2),(y3,x4)} 

Alternating path has edges alternating between M 
and E/M. Path x1, y1, x2, y3, x4 is alternating. 

y4 

x1 x2 x3 x4 

y1 y2 y3 

An alternating path is augmenting if both of 
its endpoints are free vertices.  

Path x1, y1, x2, y3, x4, y4 
is augmenting. 

Maximum Matching 

If a matching M (in green) has an augmenting path, 
then we get a larger matching by swapping the 
edges on the augmenting path. 

y4 

x1 x2 x3 x4 

y1 y2 y3 y4 

x1 x2 x3 x4 

y2 y3 y1 

Hungarian Algorithm 

The algorithm starts with any matching  and 
constructs a tree via a breadth-first search to 
find an augmenting path.  
 
If the search succeeds, then it yields a matching 
having one more edge than the original. 
Then we search again (it most it happens is V/2) 
for a new augmenting path.  
If the search is unsuccessful, then the algorithm 
terminates and  must be the largest-size matching 
that exists. 
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What is the runtime 
complexity of the 

Hungarian algorithm? 

Complexity of BFS – O(V+E) 

We run it V/2 times 

This, the runtime is O(V E). 

Proof of Correctness 

The algorithm clearly terminates, since we 
match one edge per step. 

Suppose that there were another matching M1 
that used more edges than M. 

Overlap M and M1 - the result is a union of cycles 
and paths. 

There is a path that have more M1 edges than 
from M. 

This path is an augmenting path. Contradiction. 

Matching on Non-Bipartite Graphs  

The Hungarian algorithm does not work on general 
graphs. 

The problem is to find an 
augmenting path, that in 
general case might have an 
odd length cycle (called a 
blossom). 

The Blossom algorithm is 
due to Edmonds, 1965. 

The blossom can be 
shrunk and the search 
restarted recursively.  

Rook Attack 

This problem asks us to place a 
maximum number of rooks (they 
move horizontally and vertically) 
on a chessboard with some 
squares cut out (forbidden 
positions)   

 Rook  R 

 R 

Rook Attack 
This problem asks us to place a maximum number 
of rooks on a chessboard with some squares cut 
out.   

r1 

r2 

r3 

c1 

c2 

c3 

The number of non-attacking rooks equals the 
number of edges in a matching.  

Here’s What 
You Need to 

Know… 

Planar Graphs 
Kuratowski Theorem 
Graph Coloring 
Bipartite Graphs 
Bipartite Matching 
Hall Theorem 


