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Probability - II 

Great Theoretical Ideas In Computer Science 

Victor Adamchik CS 15-251 

Carnegie Mellon University 

 Tuesday at 3 pm, same room 
 All topics 
 3x5 index card 
 Practice exam 
  Review: Sunday, 6pm at DH 2210 
 Format: 
    short answers (5-6 prblms) 
    variant of HW question 
    long problems with proofs 
                                 (3-4 prblms) 

 
  

Exam 

 
 Distributions 
 Expectation 
 Conditional Expectation 
 Tail bounds 
 
  
  
 

Outline  
Review: 

some useful 
sample spaces… 

1) A fair coin 

sample space S =  {H, T} 

Pr(H) = ½ , Pr(T) = ½. 

2) A “bias-p” coin 

sample space S =  {H, T} 

Pr(H) = p, Pr(T) = 1-p. 

3) We flip a bias-p coin n times 

sample space S =  {H,T}n 

if outcome x in S has k heads and n-k tails 

Event Ek = {x in S | x has k heads} 

Binomial Distribution B(n,p) 
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Teams A is better than team B 

The odds of A winning are 6:5 

What is the chance that A will beat B 
in the “best of 7” world series? 

i.e., in any game, A wins with probability 6/11 

Example Example 

Team A beats B with  
probability p=6/11  

in each game 

Sample space S = {W, L}7 

Pr[x] = pk (1-p)7-k  if there are k W’s in x 

Want event E = “team A wins at least 4 games” 

E = E4 U E5 U E6 U E7  where Ek = {x in S | x has k W’s}  
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A biased coin is tossed until the first time  
that a head turns up. 

sample space S =  {H, TH, TTH, TTTH, …} 

Geometric Distribution 

Pr[k] = (1-p)k-1p 

sanity check: 

            (shorthand S = {1, 2, 3, 4, …}) 
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Expectation 

a.k.a. Expected Value 
a.k.a. Mean 

Expectation 

Intuitively, expectation of X is what its  

average value would be if you ran the  

experiment millions and millions of times. 

Definition: 

Let X be a random variable in experiment with  

sample space Ω.  Its expectation is defined by: 

X(k) Pr[k]E[X]
Ωk

Expectation 

E[X] can be viewed  as a sum of possible  

outcomes, each weighted by its probability 

X(k) Pr[k]E[X]
Ωk

k  k]Pr[XE[X]
Ωk

Here a discrete r.v. X takes values X(k) with 

corresponding probabilities Pr[k] 
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Example 

Let R be the roll of a standard die.  

= 3.5 

Question:  What is Pr[R = 3.5]? 

Answer:  0.        Don’t always expect the expected! 
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Example 

= −5/36  ≈  −13.9¢ 

Suppose you win $30 on a roll of double-6, 

 and you lose $1 otherwise.  Let W be the 

 random variable representing your winnings. 
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Linearity of Expectation 

One of the top tricks in probability... Linearity of Expectation 

Given an experiment,  

let X and Y be random variables. 

Then      E[X+Y] = E[X] + E[Y] 

X and Y do not  have to be independent!! 

Linearity of Expectation 

E[X+Y] = E[X] + E[Y] 

Proof: Let Z = X+Y   (another random variable). 

Then 

Y(k)  X(k) Pr[k]Z(k) Pr[k]E[Z]
ΩkΩk

E[Y]E[X]  Y(k) Pr[k]X(k) Pr[k]
ΩkΩk

Linearity of Expectation 

E[X+Y] = E[X] + E[Y] 

Also:  E[a X + b] = a E[X] + b  for any a,b∈ℝ, 

E[X1 + ∙∙∙ + Xn] = E[X1] + ∙∙∙ + E[Xn] 

By Induction 
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Indicator Random Variables 

Definition: 

Let A be an event.  The indicator of A is 

the random variable X which is 1 when 

A occurs and 0 when A doesn’t occur. 

X : Ω → ℝ Ak if 0,

Ak if 1,
X(k)

Expectation of an Indicator 

Let X be an indicator r.v. for the event A. 

The expectation of this indicator is  

 

E[X] = 1* Pr[A] + 0* Pr[Ac] = Pr[A]  

Linearity of Expectation 

+ 

Indicators 

= best friends forever 

Exercise 

There are 251 students in a class. 
 

The TAs randomly permute their 

midterms 

       before handing them back. 
 

Let X be the number of students getting  

       their own midterm back. 
 

What is E[X]? 

Solution 

Let Ai be the event that ith students gets own midterm. 

Let Xi be the indicator of Ai. 

Then X = X1 + X2 + ∙∙∙ + Xn 

Thus E[X] = E[X1] + E[X2] + ∙∙∙ + E[Xn] 

         by linearity of expectation 

E[Xi] = Pr[Ai], and Pr[Ai] =  1/251   for each i. 

It follows E[X] = 251 ∙ (1/251) = 1 

So, in expectation, 1 student will 
receive his/her midterm. 

Pretty neat: it doesn’t depend on 
how many students! 

Question: were the Xi independent? 

No! E.g., think of n=2 
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Type Checking 

Pr[B] 

E[X] 

B must be an event 

X must be a R.V. 

cannot do Pr( R.V. ) or E[event ] 

Operations on R.V.s 

You can sum them, take differences,  
 or do most other math operations  

      (they are just functions!) 

E.g., (X + Y)(t) = X(t) + Y(t) 

(X*Y)(t) = X(t) * Y(t) 

(XY)(t) = X(t)Y(t) 

Expectation of a Sum of r.v.s 

= Sum of their Expectations 

even when r.v.s are not independent! 

Expectation of a Product of r.v.s 

vs. Product of their Expectations ? 

Multiplication of Expectations 

A coin is tossed twice.  
Xi = 1 if the ith toss is heads and 0 otherwise. 

E[ Xi ] = 1/2 

E[ X1 X2 ] = E[ X1 ] E[ X2 ] = 1/4 

Lemma:  
E[XY] = E[X] E[Y]  
if X and Y are independent random variables.  

1/4 

Proof left as exercise. 

Multiplication of Expectations 

Consider a single toss of a coin. 
X = 1 if heads turns up and 0 otherwise. 

 Set Y = 1 - X 

E[X Y]  E[X] E[Y] 

 E[X] = E[Y] = 1/2 

since  X Y = 0 

X and Y are 
not 

independent 

More examples of 
Computing Expectations 
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Geometric Random Variables 

X ~ Geometric(p) 

What is E[X]? 

Average number of p-biased coin flips  

until you get Heads: you might guess 1/p. 
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The Coupon Collector 

There are n different kinds of coupons. 

∘ ∘ ∘ 

On each day, you get a random coupon. 

(You may get duplicates.) 

Let X be the # of days till you have them all. 

What is E[X]? 

The Coupon Collector 

Let X be the # of days till you have them all. 

What is E[X]? 

Key idea:  Let Xi be # of days it took you to  

   go from i−1 to i coupons.   

Key idea:  X = X1 + X2 + ∙∙∙ + Xn 

E[X] = E[X1] + E[X2] + ∙∙∙ + E[Xn] 

So we need to figure out E[Xi]. 

The Coupon Collector 

Key idea:  Let Xi be # of days it took you to  

   go from i−1 to i coupons.   

When sitting on i−1 distinct coupons,  

each day you have probability 

of getting a new one. n

1)-(i-n

n

1)-(i-n
Geometric~Xi

1)-(i-n

n
]E[Xi

The Coupon Collector 

where Hn = “the nth harmonic number”  

lnn) O(nH n
i
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10% of the surface of a sphere is colored green, 
and the rest is colored blue.  Show that now 
matter how the colors are arranged, it is possible 
to inscribe a cube in the sphere so that all of its 
vertices are blue. 

Using linearity of expectations in 
unexpected places… 
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Solution 

Pick a random cube.  (Note: any particular vertex 
is uniformly distributed over surface of sphere). 

Let Xi = 1 if ith vertex is blue, 0 otherwise 

E[Xi] = P(Xi=1) = 9/10 
 

E[X] = 8 * 9/10 > 7 
 

So, must have some cubes where X = 8. 

Let X = X1 + X2 + ... + X8 

The general principle we used  
in this example: 

Show the expected value of some  
      random variable is “high” 

Hence, there must be an outcome in the  
sample space where the random variable 

takes on a “high” value. 

(Not everyone can be below the average.) 

This is called  “the probabilistic method” 

The Probabilistic Method 

It was developed by Paul Erdos as a technique for 
proving that something exists by setting up some 
probability distribution and showing that what we 

want happens with probability > 0.  
 

The basic technique is based on two observations: 

1) If E[X]=, then x> s.t. Pr[X=x] > 0 

2) If Pr[X] > 0, then X exists 

Conditional expectations 

Just like probabilities, we can also talk about 
expectations conditioned on some event. 

E[X | A] = expectation of X conditioned on event A 

Law of total expectation: 
 

 E[X] = Pr(A) E[X | A] + Pr(Ac) E[X | Ac] 

k

A]|kPr[X kA]|E[X

Example 

Two discrete r.v. X and Y have probabilities  
defined by the table below. Find E[X|Y=2]. 

k

2]Y|kPr[X k2]Y|E[X
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1/6
1

2]Pr[Y

2]Y&2Pr[X
2

2]Pr[Y

2]Y&1Pr[X
1

2]Pr[Y

2]Y&0Pr[X
0

Y=2 0 1/6 1/8 

Y=1 1/8 1/6 1/8 

Y=0 1/6 1/8 0 

X=0 X=1 X=2 

Markov’s inequality 

Not too many people can be well above the average. 

Suppose X is a non-negative r.v. with E[X] = 10  
How often can X be 20 or higher? 
i.e., How high can Pr [ X ≥ 20 ] be? 

Markov’s inequality:  
For a non-negative r.v. X, and c > 0 

 
 Pr[X ≥ c] ≤ E[X]/c   
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Markov’s inequality 
For a non-negative r.v. X,  

Pr[X ≥ a] ≤ E[X]/c        
for every c > 0. 

Proof. 

c]Pr[X cx]Pr[X cx]Pr[X xE[X]
cxcx

Drop the first sum and replace x by c 

QED. 

cxcx0x

x]Pr[X xx]Pr[X xx]Pr[X xE[X]

Here’s What 
You Need to 

Know… 

Geometric and Binomial   
                   Distributions 
Expected Value 
Linearity of Expectation 
Conditional Expectation 
Law of Total Expectation 
Probabilistic Method 
Markov’s Inequality 


