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Plan 

Introduction to 
Impartial Combinatorial Games 

The Beer Can Game 

Players alternate 
placing beer cans on 
a circular table.  
Once placed a can 
cannot move.  The 
first one who 
cannot put a can on 
the table loses. 

What’s the winning 
strategy? 

MIRRORING 

STRATEGY 
 

First player  

wins 

21 chips 

Two Players: 1 and 2 

A move consists of removing one, 
two, or three chips from the pile 

Players alternate moves, with 
Player 1 starting 

Player that removes the last 
chip wins 

A Take-Away Game 

Which player would you rather be? 

Try Small Examples! 

If there are 1, 2, or 3 only, 
player who moves next wins 

If there are 4 chips left, 
player who moves next 

must leave 1, 2 or 3 chips, 
and his opponent will win 

With 5, 6 or 7 chips left, the player who moves 
next can win by leaving 4 chips 
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0, 4, 8, 12, 16, … are target 
positions; if a player moves 
to that position, they can 

win the game 

Therefore, with 21 
chips, Player 1 can win! 

21 chips 

What if the last player to move loses? 

If there is 1 chip, the player 
who moves next loses 

If there are 2,3, or 4 chips left, 
the player who moves next can 
win by leaving only 1 

In this case, 1, 5, 9, 13, … are a win for the 
second player 

Combinatorial Games 

• A set of positions (position = state of the game)  

• The players alternate moving  

• A terminal position is one in which there are 
 no moves  

• The game must reach terminal position and end in    
 a finite number of moves.  

• Rules specify for each  position which moves to 
other positions  are legal moves  

• we restrict to “impartial” games (same moves available for both 
players) 

•  (No draws!)  

• Two players (know the state) 

Normal Versus Misère 

Normal Play Rule: The last player to move wins 

Misère Play Rule: The last player to move loses 

Games ends by reaching a terminal position 
from which there are no moves.  

What is not captured 

No randomness 

No hidden state 

No draws 

(This rules out poker) 

(This rules out Battleship) 

(This rules out tic-tac-toe) 

However, Go, Hex and many other games do fit. 

P-Positions and N-Positions 

P-Position: Positions that are winning for 
the Previous player (the player who just 
moved the game into that position)   

• Sometimes called LOSING positions 

N-Position: Positions that are winning for 
the Next player (the player who is about to 
move from the current position)   

• Sometimes called WINNING positions 
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0, 4, 8, 12, 16, … are P-positions; 
if a player moves to that 
position, they can win the game 

 

21 chips is an N-position 
(“First player wins”) 

21 chips 

What’s a P-Position?  
“Positions that are winning for the Previous 

player (the player who just moved)” 

That means (focusing on normal play rule): 

For any move that N makes 

There exists a move for P such that 

For any move that N makes 

There exists a move for P such that 

…
 

There exists a move for P such that 

There are no possible moves for N 

P-positions and N-positions can be 

defined recursively by the following: 

(1) All terminal positions (from which 
there are no moves) are P-positions 
(normal winning rule) 

(3) A position where every possible move  
leads to an N-position is a P-position 

(2) A position where at least 1 move 
 leads to a P-position is an N-position. 

Game tree visualization 

Can label nodes as P or N working upwards from 
leaves (which are P-positions) 

Game tree visualization Theorem:  Every position in a 

combinatorial game is either  

a P-position or an N position. 

Proof: Follows from the recursive 
labeling algorithm, and the fact that 
the game must end.   
 
(Formally, induction on maximum number of 
steps for game to end from given position; 
the “height” of the position in game tree.) 
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Chomp! 

Two-player game, where each move 
consists of taking a square and removing 
it and all squares to the right and above. 

BUT -- You cannot move to (1,1) 

Show That This is a P-position 

N-Positions! 

Show that this is an N-position 

P-position! 

Let’s Play! I’m player 1 

No matter what you do, I can mirror it! 

Mirroring is an 
extremely important 

strategy in combinatorial 
games! 
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Theorem: A square starting position of 
Chomp is an N-position (Player 1 can win) 

Proof: 

The winning strategy for player 1 is to 
chomp on (2,2), leaving only an “L” 
shaped position 

Then, for any move that Player 2 takes, 
Player 1 can simply mirror it on the flip 
side of the “L” 

Theorem: Every rectangle of area > 1 is an N-
position 
Proof:  Consider this position: 

But by the geometry of the situation, X is also available as a 
move from the starting rectangle.  It follows that the original 
rectangle is an N-position. QED  

This is either a P or an N-position.   
If it’s a P-position, then the original rectangle was N.   
If it’s an N-position, then there exists a move X from it to a P-
position. 

Note that this is a non-constructive proof.   
We’ve shown that there exists a winning move from a rectangle, 
but we have not found the move! 

The Game of Nim 

x y z 

Two players take 
turns moving 

A move consists of selecting a pile and removing 
one or more chips from it. 

(In one move, you cannot remove chips from 
more than one pile.) 

Winner is the last player 
to remove chips 

x y z 

We use (x,y,z) to 
denote this 
position 

(0,0,0) is a: P-position 

Analyzing Simple Positions One-Pile Nim 

What happens in positions of the form (x,0,0)? 
(with x>0) 

The first player can just take the 
entire pile, so (x,0,0) is an N-position 

Two-Pile Nim 

P-positions are those for which the two 
piles have an equal number of chips. 

If it is the opponent’s turn to move from 
such a position, he must change to a position 
in which the two piles have different number 
of chips. 

From a position with an unequal number of 
chips, you can easily go to one with an equal 
number of chips (perhaps the terminal 
position).     [ Mirroring again! ] 
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Two-Pile Nim 

Theorem:  P-positions are those for which the 

two piles have an equal number of chips.  

(and N-positions  unequal piles) 

3-step process to prove this formally: 
 
1. Check terminal positions have equal piles.  

2. Show that from unequal piles, there is 
some move making the piles equal.  

3. Show that all moves from equal piles  
result in a position with unequal piles. 

Nim-Sum 
The nim-sum of two non-negative integers is 
their addition without carry  in base 2. 

We will use  to denote the nim-sum 

2  3 = 

5  3 = 

7  4 = 

(10)2  (11)2 = (01)2 = 1 

(101)2  (011)2 = (110)2 = 6  

(111)2  (100)2 = (011)2 = 3  

 is associative: (a  b)  c = a  (b  c) 

 is commutative: a  b = b  a 

For any non-negative integer x,  

x  x = 0 

Cancellation Property Holds 

If x  y = x  z 

Then x  x  y = x  x  z 

So y = z 

Bouton’s Theorem: A position (x,y,z) in Nim 
is a P-position if and only if x  y  z = 0  

Let Z denote the set of Nim positions with 
nim-sum zero  

Proof: 

Let NZ denote the set of Nim positions 
with non-zero nim-sum  

We prove the theorem by proving that Z and 
NZ satisfy the three conditions of P-positions 
and N-positions  

3-Pile Nim (1) All terminal positions are in Z 

(2) From each position in NZ, there is 
 a move to a position in Z 

The only terminal position is (0,0,0) 

001010001 

100010111 

111010000 

010010110 

 

001010001 

100010111 

101000110 

000000000 

 

Look at leftmost column with an odd # of 1s 

Rig one of the numbers with a 1 in that column 
so that everything adds up to zero 
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(3) Every move from a position in Z is 
 to a position in NZ 

If (x,y,z) is in Z, and x is changed to 
x  x, then we cannot have 

x  y  z = 0 = x  y  z 

Because then x = x          QED 

Nim as a sum 

3-pile nim is like the “sum” of three  
1-pile nim games. 
 
At each step, pick one of the three 
games (that is non-terminal) and make 
a move in that game.    
 
The position is terminal iff all 3 games 
are in terminal positions. 

Sum of games 

A and B are games.  The game A+B is a new game 

where the allowed moves are to pick one of the 

two games A or B (that is in a non-terminal 

position) and make a legal move in that game.    

Terminal positions of A+B  Positions that terminal 

in both  A and B. 

 
Note: The sum operator is 

•  commutative [ A+B = B+A ] 

•  associative  [ (A+B) + C = A + (B+C) ] 

Analyzing Games  

We assign a number to positions of any (normal, 

impartial) game.   

 

This number is called the Nimber of the game.* 

 
• Also called the “Sprague-Grundy” number of a game.   

 
 
 

* We will blur the distinction between game positions and 

games. For each position, we consider the game resulting 

when that position is the starting position. 

The MEX 

The “MEX” of a finite set of natural 

numbers is the Minimum EXcluded 

element. 

MEX {0, 1, 2, 4, 5, 6} =  

MEX {1, 3, 5, 7, 9} =  

3 

0 

MEX {} =  0 

Definition of Nimber 

The Nimber of a game (position) G (denoted 

N(G)) is defined inductively as follows: 

 
     N(G) = MEX{N(G1), N(G2), … N(Gn)} 

 
where G1, G2, … Gn are the successor positions 

of G (i.e. the positions resulting from all the 

allowed moves) 

N(G) = 0 if G is terminal 
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Nim revisited 

Let Pk denote the position that is a pile  

of k stones in the game of (one-pile) Nim. 
 

 
Theorem:    N(Pk) = k 

Theorem: N(Pk) = k 

Proof:  Use induction.   

Base case is when k=0.  Trivial.   

When k>0 the set of possible positions after 

a legal move is Pk-1, Pk-2, … P0.   

By induction these positions have nimbers  

k-1, k-2, … 0.  

The MEX of these is k.    QED. 

(i.e., Nimber = 0 if & only if P-position) 

Theorem:  A game/position G is a P-position 

if and only if N(G)=0. 

Proof:  By induction (on max. # steps for game to end 

from given position) 

Trivially true if G is a terminal position.   

If N(G)≠0, then by the MEX rule there exists a 

move to G’ from G that has N(G’)=0.  

By induction this is a P-position.  

Thus G is an N-position. 

 

Suppose G is non-terminal. 

(only if) To prove: N(G)  0 implies N-position 

 

If N(G)=0, then by the MEX rule none of the 

successors of G have N(G’)=0.   

By induction all of them are N-positions.  

Therefore G is a P-position! 

 

Nimber = 0 iff P-position (contd) 

(if part) To prove:  

 N(G) = 0 implies P-position 

The Nimber Theorem 

Theorem:  Let A and B be two 
impartial normal games.  Then: 
 
      N(A+B) = N(A)  N(B) 

Proof:  Deferred for now. 

    The beauty of Nimbers is that they 

completely capture what you need to 
know about a game in order to add it to 

another game.   

 

 This often allows you to compute 
winning strategies, and can speed up 
game search. 
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Application to Nim 

Note that the game of Nim is just the sum 
of several games.  If the piles are of size a, 
b, and c, then the nim game for  these piles 
is just Pa + Pb + Pc. 

The nimber of this position, by the Nimber 
Theorem, is just abc. 

So it’s a P-position if and only if abc=0, 
which is what we proved before. 

   

2 

0 

0 

0 0 

0 

1 
1 

1 1 

Application to Chomp 
What if we add this to a nim pile of size 4? 

If we remove two chips from the nim pile, then 
the nimber is 0, giving a P-position.  This is 
the unique winning move in this position. 

Is this an N-position or a P-position? 

Nimber  0. So it is an N-position.   
How do you win? 

+ 

4     2 = 6   

The Game of Dawson’s Kayles 

   Start with a row of n bowling pins: 

A move consists of knocking down 2 neighboring pins. 

The last player to move wins. 

Note: an isolated pin is stuck and can never be 
removed. 

How do we analyze this game? 

Note that in a row of n pins there are n-1 possible 

moves [ (x,y) denotes x pins to left and y pins to 

right of the two pins that are knocked down ] 

(0,n-2), (1,n-3), … , (n-3,1), (n-2,0) 

So the nimber of a row of n pins, denoted N(n) is: 

0 if n=0 
0 if n=1 
MEX{N(0)N(n-2), N(1)N(n-3), …  N(n-2)N(0)}  

Let’s work out some small values….. 

n 0 1 2 3 4 5 6 7 8 9 10 11 12 

N(n) 0 0 1 1 2 0 3 1 1 0 3 3 2 

The table has period 34. 

Note that the case n=9 is an P-position 
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Proof of the Nimber Theorem: 

N(A+B) = N(A)  N(B) 

Let the moves in A be A1 , A2 , …, An 

And the moves in B be B1, B2, …, Bm 

The positions after a move in A+B are:  

   A+B1, A+B2, … A+Bm, A1+B, … An+B 

  If either of these lists is empty, we just have one 

game, and the theorem is trivial. 

By definition  
N(A+B) =MEX { N(A+B1),…N(A+Bm),                     

     N(A1+B),…N(An+B) } 
 So, by induction (what are we inducting on?),  

N(A+B) = MEX{N(A)N(B1),…, N(A)N(Bm), 

                     N(A1)N(B),…, N(An)N(B) } 

 
How do we prove this is N(A)N(B)? 

We do it by proving two things: 

    (1) N(A)N(B) is not in the list 

    (2)  y < N(A)N(B), y is in the list 

MEX{N(A)N(B1),…, N(A)N(Bm), 

         N(A1)N(B),…, N(An)N(B) } 

 Why is N(A)N(B) not in this list?   

 
We have N(Bi)   N(B)  (Why?) 

So N(A)N(Bi)  N(A)N(B)  

 
Likewise N(Aj)  N(A)  

Therefore N(Aj)N(B) N(A)N(B)  

 

(1) N(A)N(B) is not in the list 

(2) For all y < N(A)N(B), y is in the list 

N(A)N(B) = 
y = 

 N(A) = 
N(B) = 

 
 

0 0 1 0 1 1 0 0 0 1 0 1 0 1 1 1 

0 0 1 0 1 1 0 0 0 0 . . . . . . 

. . . . . . . . . . . . .  0 . . . . . . 

. . . . . . . . . . . . .  1 . . . . . . 

    The highlighted column is the first (from left to right) 
where y and N(A)N(B) differ. At that bit position 
N(A)N(B) is 1 and y is 0.  So exactly one of N(A) and N(B)  
has a 1 in that position, WLOG assume it is  N(B) 

    Because N(B)=MEX{N(B1),…N(Bm)}, for every pattern of bits 
after the highlighted column, there is a Bi with that pattern 
in those columns (and 0 in highlighted column)  

0 0 1 0 1 1 0 0 0 0 x x x x x x N(Bi) = 

   we can produce the desired y by moving in B to some Bi.  

Study Bee 

• Combinatorial games 
• Normal Versus Misère 
• P-positions versus N-positions 
• Mirroring 
• Chomp 
• Nim & Nim-sum 
• Bouton’s Theorem 
• Sums of games 
• Nimber of a game 
• Nimber theorem 

Supplementary material: 
Reducing one game to another 
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The Game of Treblecross 

Tic-Tac-Toe on a line with only X’s allowed.   

First player to form 3-in-a-row wins. 

X 

Let’s play.  I go first: 

X 

First we eliminate “stupid” moves.   

A stupid move is one which allows the opponent 

to win immediately on the next move. 

↑  ↑   ↑  ↑ 

Stupid moves 

   Stupid move elimination does not change the  

  outcome or the strategy of the game. 

   Claim:  Treblecross of length n is equivalent to 

Dawson’s Kayles[3] of length n+2.  

      ( The [3] means you must take 3 pins in a row.) 

 

X 

Proof idea :  Verify base cases (easy).  

* * * * * * * * * * * * * * * 

To the left of the X in the treblecross game, there is a 
treblecross game of size 5 (not counting stupid moves). 
This is equivalent (by induction) to the size 7 Dawson 
Kayles[3] game.  The right side is the same.   
The game trees are thus identical.   

General case:  Will argue that the game trees are identical. 

Treblecross: 

D. Kayles: 

We can now evaluate the game (i.e., the nimbers 
of various positions) just as we did with regular 
Dawson’s Kayles (that removed two pins) 

n 0 1 2 3 4 5 6 7 8 9 10 

n+2 0 1 2 3 4 5 6 7 8 9 10 11 12 

N(n) 0 0 0 1 1 1 2 2 0 3 3 1 1 


