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COUNTING II: 
PIRATES, PIGEONS, PASCAL, CATALAN  

Great Theoretical Ideas In Computer Science 

V. Guruswami CS 15-251       Fall 2014 

Lecture 6 September 11, 2014 Carnegie Mellon University 

+ + ( ) + (    ) = ? 

Plan 

Some recap 
Pigeonhole Principle 
Pascal’s Triangle 
Combinatorial Proofs 
Manhattan Walk 
Catalan Number 
 

Permutations vs. Combinations 

n! 
(n-r)! 

n! 
r!(n-r)! 

= 
n 
r 

Ordered Unordered 

Subsets of r out of n distinct objects 

= P(n,r) 

# ways to arrange n symbols:  
r1 of type 1, r2 of type 2, …, rk of type k 







 










!!...rr!r

n!
nr...rr if 0,

r;...;r;r

n

k21

k21

k21

Multinomial Coefficient 

5 distinct pirates want to 
divide 20 identical, indivisible 

bars of gold. How many 
different ways can they divide 

up the loot? 
 

GG/G/GG/GGGGGGGGGGGGGG/G 

Sequences with 20 G’s and 4 /’s 

GG/G//GGGGGGGGGGGGGGGG/G 
 

In general, the jth pirate gets the number of 
G’s after the j-1st / and before the jth /.  
 
This gives a correspondence between 
divisions of the gold and sequences with  
20 G’s and 4 /’s. 
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# ways to divide up the loot 

= # sequences with 20 G’s and 4 /’s 

  



24

4











205 -1

5 -1











# ways k distinct pirates 
can divide n identical, 
indivisible bars of gold 








 








 

n

1kn

1-k

1-kn

Number of different ways to throw n 

indistinguishable  balls  into  k 

distinguishable  bins: 








 








 

n

1kn

1-k

1-kn

Another interpretation How many nonnegative integer 
solutions to the following 
equations? 

nxxx k21  ...








 








 

n

1k n

1-k

1-kn

How many positive integer 
solutions to the following 

equations? 
x1 + x2 + x3 + … + xk = n 

 x1, x2, x3, …, xk > 0 

bijection with solutions to 

y1 + y2 + y3 + … + yk = n-k 
y1, y2, y3, …, yk ≥ 0 

Think of xi -> yi+1 

n-1 
k-1 

Remember to distinguish between 
Identical / Distinct Objects 

If we are putting n objects into  
k distinct bins. 

n objects are  

distinguishable 

n objects are  

indistinguishable 

n+k-1 
k-1 

kn 
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Pigeonhole Principle 

If there are more pigeons than 
pigeonholes, then some pigeonholes 
must contain two or more pigeons 

 

Pigeonhole Principle 

If there are more pigeons than pigeonholes, then 
some pigeonholes must contain two or more 

pigeons 
 

Example:  
two people in Pittsburgh must have the 
same number of hairs on their heads 

Pigeonhole Principle 

Problem:  Prove that if seven distinct 

numbers are selected from {1,2,3,…,11}, 

some two of these numbers sum up to 12. 

 

 
Pigeons : the chosen numbers 

 Holes: Falling in same hole should  

    mean numbers sum up to 12 

  
6 holes: {1,11}, {2,10}, {3,9}, {4,8}, {5,7}, {6} 

Some two numbers fall in same hole, 

and thereby sum to 12. 

Place selected numbers in hole  

corresponding to the set containing it 

Pigeonhole Principle 

Problem:  

Prove that among any n integers, 

there is a non-empty subset whose 

sum is divisible by n. 

 

 

Among any n integer numbers, there is 
a non-empty subset whose sum is 
divisible by n. 

Exist si, sk, i < k such that n divides sk - si.  
xi+1 + … + xk is our desired sum 

Consider si=x1 +…+xi modulo n. How many si?  
These are the n “pigeons” 

Remainders modulo n belong to {0, 1, 2, …, n-1}. 

If some remainder is 0, we are done. 

If not,  (n-1) remainders {1,2,…,n-1}. The “holes”. 

Pigeonhole Principle 

Problem:  

The numbers 1 to 10 are arranged in 

random order around a circle. Show 

that there are three consecutive 

numbers whose sum is at least 17. 

 

What are pigeons?  
And what are pigeonholes? 



4 

The numbers 1 to 10 are arranged in random order 

around a circle. Show that there are three consecutive 

numbers whose sum is at least 17 

Pigeons: S1+ .. + S10= 3 (a1+a2+…+a10)  = 3*55 = 165 

Let S1=a1+a2+a3, … S10=a10+a1+a2 

There are 10 pigeonholes. 

Since 165 > 10 *16, there must exist a pigeonhole 
with at least 16 + 1 pigeons 

Actually, we’re using a generalization of the PHP 
If  x1 +x2 +… + xk > n then some xi > n/k 

Pigeonhole Principle 

Problem:  

Show that for some integer k > 1,  

3k ends with 0001 (in its decimal 

representation). 

What are pigeons?  
And what are pigeonholes? 

Show that for some integer k > 1,  
3k ends with 0001  

3k = 3m mod (10000), m < k 

Choose 10001 numbers: 31,32,…, 310001 

3k-m = q*10000 + 1  ends with 0001 

3k-m = 1 mod (10000) 

3k - 3m  = 0 mod (10000), m < k 

3m (3k-m  - 1)  = 0 mod (10000), m < k 

But 3 is relatively prime to 10000, so 

Now, to binomial theorem… 

knk
n

0k

n yx 
k

n
y)(x 



 









POLYNOMIALS EXPRESS 
 CHOICES AND OUTCOMES 
 
Products of Sum = Sums of Products 

+ + ( ) + ( ) = 

+ + + + + 

b2 b3 b1 

t1 t2 t1 t2 t1 t2 
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b2 b3 b1 

t1 t2 t1 t2 t1 t2 

  b1 t1  b1 t2 b2 t2 b2 t1 b3 t1 b3 t2 

(b1 + b2 + b3)(t1 + t2) = b1t1 + b1t2 + b2t1 + b2t2 
+ b3t1 + b3t2 

There is a 
correspondence between 
paths in a choice tree and 

the cross terms of the 
product of polynomials! 

1 X 1 X 1 X 1 X 

1 X 1 X 

1 X 

Choice tree for terms of (1+X)3 

1 X X X2 X X2 X2 X3 

Combine like terms to get 1 + 3X + 3X2 + X3 

1 X 1 X 1 X 1 X 

1 X 1 X 

1 X 

(1+X)3= 1 + 3X + 3X2 + X3 

1 X X X2 X X2 X2 X3 

What is the combinatorial meaning of those 
coefficients? 

In how many ways can 
we create a x2 term? 

What is a closed form expression for ck? 

n times 

ck, the coefficient of Xk, is the number  
of paths with exactly k X’s.  

(1 X)

     

n

X X X X X( )( )( )( ). . . ( )1 1 1 1 1

After multiplying things out, but before combining 
like terms, we get 2n cross terms, each 
corresponding to a path in the choice tree.  











k

n
ck

n
n

2
210

n xc...xcxccx)(1  The Binomial Theorem 

binomial 
expression 

Binomial Coefficients 

n2n x
n

n
...x

2

n
x

1

n

0

n
x)(1 



































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The Binomial Formula 

knk
n

0k

n yx
k

n
y)(x 



 









What is the coefficient of  
EMPTY in the expansion of 

(E + M + P + T + Y)5 ? 

 

5! 

What is the coefficient of  
EMP3TY in the expansion of 

(E + M + P + T + Y)7 ? 

The number of ways 
to rearrange the 

letters in the word 
SYSTEMS 

What is the coefficient of BA3N2  
in the expansion of 

(B + A + N)6? 

The number of ways 
to rearrange the 

letters in the word 
BANANA 

What is the 
coefficient of    

            
 

in the expansion of 
(X1+X2+…+Xk)n? 







 

!!...rr!r

n!
nr...rr if 0,

k21

k21

X1   X2  ….  Xk 
r1 rk r2        

 
Multinomial coefficients 

  



n

r1;r2;...;rk











0,  if r1  r2  ... rk n
n!

r1!r2 !...rk !







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The Multinomial Formula 

 

 

 



i

k

, ,

r=n

3 k1 2

21 k

n

21

rrr r
321 k

r r ...,r 21 k

X +X +...+ X

n
= X X X ...Xr ;r ;...;r

On  to  Pascal… 
 

The binomial coefficients have so 
many representations that many 

fundamental mathematical 
identities emerge… 

0

(1 )
n

n k

k

n
x x

k

 
   

 


Pascal’s Triangle: 

nth row are the coefficients of  (1+X)n 

(1+X)1  = 

(1+X)0 = 

(1+X)2 = 

(1+X)3 = 

1 

1 + 1X 

1 + 2X + 1X2 

1 + 3X + 3X2 + 1X3 

(1+X)4 = 1 + 4X + 6X2 + 4X3 + 1X4 

nth Row Of Pascal’s Triangle: 
 

(1+X)1  = 

(1+X)0 = 

(1+X)2 = 

(1+X)3 = 

1 

1 + 1X 

1 + 2X + 1X2 

1 + 3X + 3X2 + 1X3 

(1+X)4 = 1 + 4X + 6X2 + 4X3 + 1X4 


































n

n
...

2

n

1

n

0

n
,,,,

Pascal’s Triangle 

1 

1 + 1 

1 + 2 + 1 

1 + 3 + 3 + 1 

1 + 4 + 6 + 4 + 1 

1 + 5 + 10 + 10 + 5 + 1 

1 + 6 + 15 + 20 + 15 + 6 + 1 

 

” 

Blaise Pascal 
1654 
 



























k

1-n

1-k

1-n

k

n
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Summing The Rows 

1 

1 + 1 

1 + 2 + 1 

1 + 3 + 3 + 1 

1 + 4 + 6 + 4 + 1 

1 + 5 + 10 + 10 + 5 + 1 

1 + 6 + 15 + 20 + 15 + 6 + 1 

 

=1 

=2 

=4 

=8 

=16 

=32 

=64 

 

0

2
n

n

k

n

k

 
  

 


1 

1   1 

1   2   1 

1   3   3   1 

1   4   6   4   1 

1   5   10   10   5   1 

1   6   15   20   15   6   1 

6+20+6 1+15+15+1 = 

n 
k  

k even 

n 
n 
k  

k odd 

n 

= 

Summing on 1st Avenue 

1 

1  1 

1  2  1 

1  3  3  1 

1  4  6  4  1 

1  5  10  10  5  1 

1  6  15  20  15  6  1 

 

2

1)n(n

2

1n

1

k
k

n

1k

n

1k










 









 

 

1 

1  1 

1  2  1 

1  3  3  1 

1  4  6  4  1 

1  5  10  10  5  1 

1  6  15  20  15  6  1 

 

Summing on kth Avenue 























 1

1

k

n

k

mn

1m

Hockey-stick 
identity 

1 

1  1 

1  2  1 

1  3  3  1 

1  4  6  4  1 

1  5  10  10  5  1 

1  6  15  20  15  6  1 

 

=2 

=5 

=13 

=3 

=8 

Fibonacci Numbers 

1n

2-n

0k

F
k

k-n














1 

1 1 

1 2 1 

1 3 3 1 

1 4 6 4 1 

1 5 10 10 5 1 

1 6 15 20 15 6 1 

Sums of Squares 

2 2 2 

2 2 2 2 

2n 
n 

n 
k  

k = 0 

n 2 

= 
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All these properties can be 
proved inductively and 
algebraically.  
But we will give 
combinatorial  proofs. 

The art of combinatorial proof The art of combinatorial proof 



















k-n

n

k

n

How many ways we can create a size k committee 
out of n people? 

LHS : By definition 

RHS : We choose n-k people to exclude from the 
committee. 

The art of combinatorial proof 

How many ways we can create a size k committee 
out of n people? 

LHS : By definition 

RHS : Pick a person, say n.  



























1-k

1-n

k

1-n

k

n

There are  committees that exclude person x 

There are  committees that include person x 

Pascal’s 
identity 

The art of combinatorial proof 

How many ways we can create an even size 
committee out of n people? 

LHS : There are so many such committees 

RHS : Choose an arbitrary subset of the first n-1 
people. The fate of the nth person is completely 
determined. 

1n
n

0k

2
2k

n














The art of combinatorial proof 

LHS : We create a size k committee, then we 
select a chairperson. 

RHS : We select the chair out of n, then from the 
remaining n-1 choose a size k-1 committee. 



















1-k

1-n
 n

k

n
 k

The art of combinatorial proof 

LHS : Count committees of any size, one is a chair. 

RHS : Select the chair out of n, then from the 
remaining n-1 choose a subset. 

1n
n

0k

2 n
k

n
 k 












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The art of combinatorial proof 

LHS : m-males, n–females, choose size k. 

RHS : Select a committee with j men, the 
remaining k-j members are women.  

























 

 j-k

n

j

m
 

k

nm k

0j

Vandermonde’s  
identity 

The art of combinatorial proof 

LHS : The number of (k+1)-subsets in {1,2,…,n+1}  

RHS : Count (k+1)-subsets with the largest element 
m+1, where k ≤ m ≤ n. 
























 n

km k

m
 

1k

1n Hockeystick 
identity 

All these properties can be 
proved by using the 
Manhattan walking 

representation of binomial 
coefficients. 

Manhattan walk 

You’re in a city where all the streets, 
numbered 0 through x, run north-south, 

and all the avenues, numbered 0 through y,  
run east-west. How many [sensible] ways are there  

to walk from the corner of 0th st. and 0th avenue to  
the opposite corner of the city? 

0 

y 
x 0 

All paths require exactly x+y steps: 
x steps east, y steps north 

 Counting paths is the same as counting which 
of the x+y steps are northward steps. 

x y

y

 
 
 

 

Manhattan walk 

y 
(x,y) 0 

. . . . . 
. . . . . 

. . . . . 
. . . . . 

. . . . . 

level n 
   (n total  

steps) 

k’th Avenue 1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

3 

2 

3 

4 4 6 

15 6 6 

5 5 10 10 

15 20 

Manhattan walk on Pascal’s triangle 










k

n

1 1 

= # Manhattan walks to 
this node  
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. . . . . 
. . . . . 

. . . . . 
. . . . . 

. . . . . 

level n 
   (n total  

steps) 

k’th Avenue 
1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

3 

2 

3 

4 4 6 

15 6 6 

5 5 10 10 

15 20 

Manhattan walk on Pascal’s Triangle 



























1-k

1-n

k

1-n

k

n

1 1 

Manhattan walk 

0 
1 

2 
3 

4 

0 
1 

2 
3 

4 























 1m

1n

m

kn

mk

Break all routes into: 
reach a star,  

leave m’th avenue there, 
 walk rest on (m+1)’st ave. 

n+1 

m+1 

Level n 

kth avenue 

0 
1 

2 
3 

4 

n 
n-k 

How many ways to  
get to        via       ? 

Level 2n 

n 
k 

More Manhattan walk 
kth avenue 

0 
1 

2 
3 

4 

  



n

k










k0

n


n

n k











2n

n




























 n

2n

k

nn

0k

2

What if we require the Manhattan walk to  
never cross the diagonal?  
 
How many ways can we walk from (0,0) to 
(n,n) along the grid subject to this rule? 

Noncrossing Manhattan walk 

(n,n) 

(0,0) 

n 

n 
 

14 such walks for n=4 

(c.f. total # Manhattan walks =          = 70 ) 








4

8

http://en.wikipedia.org/wiki/File:Catalan_number_4x4_grid_example.svg
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Let’s count # violating paths, that do cross the diagonal 

Will do so by a bijection. 

Find first step above the diagonal.  

“Flip” the portion of the path after  that step.  

Flip the portion of the  
path after  the first edge 
above the diagonal.  

Note: New path goes to (n-1,n+1) 

Claim (think about it):  
Every Manhattan walk from (0,0) to (n-1,n+1)  
can be obtained in this fashion in exactly one way 

Thus, number of noncrossing Manhattan walks on 
n x n grid = 

How many sequences of n (’s and n )’s are 
there such that every prefix has more (’s 
than )’s?  

The above is the n’th Catalan number. 
Miraculously pervasive: 

- # permutations of {1,2,…,n} that don’t have 3 term 
increasing subsequence 

- # ways the numbers 1, 2, ..., 2n can be arranged in a 
2-by-n  rectangle so that each row and each column is 
increasing.  
-number of different ways a convex 
polygon with n + 2 sides can be cut into triangles  by 
connecting vertices with straight lines 

Answer: 

Study Guide 

  

• Pirates and Gold 

•Binomial & Multinomial theorems 

• Pigeonhole principle 

• Combinatorial proofs of    
 binomial identities 

• Manhattan walks 

• Catalan numbers 
 


