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September  9, 2014 

Counting I 

Straight Flush:  36 

Four of  a Kind:  624 

Full House:  3,744 

Flush:  5,112 

Straight:  9,180 

Three of  a Kind:  54,912 

Two Pair: 123,552 

One Pair:  1,098,240 

Nothing: 1,302,540 

2,598,960 

15-251: Great Theoretical Ideas in Computer Science 

Fall 2014, Lecture 5   
In the next 3-4 lectures we will learn some 
fundamental counting methods. 
 
                                    
Addition and Product Rules 

The Principle of Inclusion-Exclusion 

Choice Trees 

 

Permutations and Combinations 

The Binomial Theorem 

 

The Pigeonhole Principle 

Diophantine Equations 

 

Recurrences. 

Generating Functions 

If I have 14 teeth on the top and  
12 teeth on the bottom, how many 

teeth do I have in all? 

A B A B  

Addition Rule 

Let A and B be two disjoint finite sets 

Addition of Multiple 
Disjoint Sets: 

 Let A1, A2, A3, …, An be disjoint, finite sets: 

A Ai i
i=1

n

i

n



 
1



Addition Rule 

(2 Possibly Overlapping Sets) 

Let A and B be two finite sets: 

|A| + |B| - |AB| 

|AB| =  

Inclusion-Exclusion 

 If A, B, C are three finite sets,  
what is the size of (A  B  C) ? 

|A| + |B| + |C|  

    - |A  B| - |A  C| - |B  C| 

        + |A  B  C| 

Inclusion-Exclusion 

 If A1, A2, …, An are n finite sets,  
what is the size of (A1  A2  …  An) ? 

∑i |Ai|  

  - ∑i < j |Ai  Aj| 

     + ∑i < j < k |Ai  Aj  Ak| 

         … 

            + (-1)n-1 |A1  A2  …  An| 

Exercise: Prove this by induction! 

Partition Method 

A Ai i
i=1

n

i

n



 
1



To count the elements of a finite set S, 

partition the elements into  

non-overlapping subsets A1, A2, A3, …, An.  
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S = all possible outcomes of  one 

white die and one black die. 

Partition Method 

Each of 6 disjoint set have size 6 = 36 outcomes 

Partition S into 6 sets: 

S = all possible outcomes of  one 

white die and one black die. 

Partition Method 

A1 = the set of outcomes where the white die is 1. 

A2 = the set of outcomes where the white die is 2.  

A3 = the set of outcomes where the white die is 3. 

A4 = the set of outcomes where the white die is 4. 

A5 = the set of outcomes where the white die is 5.  

A6 = the set of outcomes where the white die is 6. 

S = all possible outcomes where 

the white die and the black die 

have different values  

Partition Method 

 Ai  set of outcomes where black die says i and 
the white die says something else. 

S  Set of  all outcomes where the 

dice show different values. S = ? 

| S | =  
i = 1 

6 

| Ai | =  
i = 1 

6 

5 = 30 
| S  B | = # of outcomes = 36 

|S| + |B| = 36 

|B| = 6 

|S| = 36 – 6 = 30 

B  set of  outcomes where dice 

agree. 

S  Set of  all outcomes where the 

dice show different values. S = ? 

Difference Method 

To count the elements of  a finite set S,  

find two sets A and B such that  

  S and B are disjoint 

and 

   S  B = A 

then |S| = |A| - |B| 

S  Set of  all outcomes where the 

black die shows a smaller number 

than the white die. S = ? 

Ai  set of outcomes where the black die says 

i and the white die says something larger. 

S = A1  A2  A3  A4  A5  A6 

|S| = 5 + 4 + 3 + 2 + 1 + 0 = 15 
It is clear by symmetry that | S | = | L |. 

S + L = 30 

Therefore | S | = 15 

S  Set of  all outcomes where the 

black die shows a smaller number 

than the white die. S = ? 

L  set of all outcomes where the black die 
shows a larger number than the white die. 

“It is clear by symmetry that |S| = |L|?” 
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S L 

Pinning Down the Idea of  Symmetry 

by Exhibiting a Correspondence 

Put each outcome in S in correspondence with 

an outcome in L by swapping color of the dice. 

Thus: S = L 

Each outcome in S gets matched with exactly 

one outcome in L, with none left over. 

f is injective (one-one) if and only if  

For Every 

There 

Exists 

f is surjective (onto) if and only if  

Let f  : A  B Be a Function  

From a Set A to a Set B 

x,yA,  x  y  f(x)  f(y) 

zB  xA  f(x) = z 

A B 

Let’s Restrict Our Attention to 

Finite Sets 

 injective (1-1) f  : A  B   | A | ≤ | B | 

B A 

 surjective (onto) f  : A  B   | A | ≥ | B | 

A B 

 bijective f  : A  B    | A | = | B | 

A B 

 bijective f  : A  B    | A | = | B | 

bijective f  means the 

inverse f-1 is well-defined 

Correspondence Principle 

If  two finite sets can be placed 

into bijection, then they have 

the same size 

It’s one of the 

most important 

mathematical 

ideas of all time! Each sequence corresponds to a unique 

number from 0 to 2n-1. Hence 2n sequences. 

Question: How many n-bit 

sequences are there? 

000000 

000001 

000010 

000011 

111111 2n-1 

 

 

 

 

 

: : 

0 

1 

2 

3 

: The entire set and the 

empty set are subsets with 

all the rights and privileges 

pertaining thereto 

S = { a,b,c,d,e } has Many Subsets 

{a}, {a,b}, {a,d,e}, {a,b,c,d,e}, 

{e}, Ø, … 
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Question: How Many Subsets Can 

Be Made From The Elements of  a 

5-Element Set? 

{ b c e } 
1 means “TAKE IT” 

0 means “LEAVE IT” 

a b c d e 

0 1 1 0 1 

Each subset corresponds to a 5-bit sequence  

(using the “take it or leave it” code) 

For bit string b = b1b2b3…bn, let f(b) = { ai | bi=1}  

S = {a1, a2, a3,…, an}, T = all subsets of S 

B = set of all n-bit strings 

Claim: f  is injective 

Any two distinct binary sequences b and b 

have a position i at which they differ 

Hence, f(b) is not equal to f(b) because  
they disagree on element ai 

Let us define a map f : B  S For bit string b = b1b2b3…bn, let f(b) = { ai | bi=1}  

a1 a2 a3 a4 a5 

b1 b2 b3 b4 b5 

 Let X be a subset of {a1,…,an}. 

 Define bk = 1 if ak in X and bk = 0 otherwise. 

  Note that f(b1b2…bn) = X. 

Claim: f  is surjective 

S = {a1, a2, a3,…, an}, T = all subsets of S 

B = set of all n-bit strings 

The number 

of  subsets of  

an n-element 

set is 2n 

Let f  : A  B Be a Function From 

Set A to Set B 

f  is a 1 to 1 correspondence (bijection) iff  

zB   exactly one xA such that f(x) = z 

f  is a k to 1 correspondence iff  

zB   exactly k xA such that f(x) = z 

A 
B 

3 to 1 function 

To count the number of horses in 

a barn, we can count the number 

of hoofs and then divide by 4 

If  a finite set A 

has a k-to-1 

correspondence 

to finite set B, 

then |B| = |A|/k 

I own 3 beanies and 2 

ties. How many different 

ways can I dress up in a 

beanie and a tie? 
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A Restaurant Has a Menu With 

5 Appetizers, 6 Entrees, 3 Salads, 

and 7 Desserts 

How many items on the menu? 

5 + 6 + 3 + 7 = 21 

How many ways to choose a complete meal? 

5 × 6 × 3 × 7   = 630 

6 × 7 × 4 × 8 = 1344 

How many ways to order a meal if  I am 

allowed to skip some (or all) of the courses? 

Leaf  Counting Lemma 

Let T be a depth-n tree when each node at 

depth 0  i  n-1 has Pi+1 children 

The number of leaves of T is given by: 

P1P2…Pn 

Choice Tree 

A choice tree is a rooted, directed tree with 
an object called a “choice” associated with 

each edge and a label on each leaf 

A choice tree  provides a “choice tree 
representation” of a set S, if 

1. Each leaf label is in S, and each 

element of S is some leaf label 

2. No two leaf labels are the same 

We will now 

combine the 

correspondence 

principle with the 

leaf counting 

lemma to make a 

powerful counting 

rule for choice tree 

representation. 

Product Rule 

Suppose every object of a set S can be 

constructed by a sequence of choices with P1 

possibilities for the first choice, P2 for the 

second, and so on.  

IF 1. Each sequence of choices 

constructs an object of type S 

2. No two different sequences create the 

same object 

There are P1P2P3…Pn objects of type S 

AND 

THEN 

How Many Different Orderings 

of  Deck With 52 Cards? 

What object are we making? Ordering of a deck 

Construct an ordering of a deck by a sequence  

of 52 choices: 

  52 possible choices for the first card; 

  51 possible choices for the second card; 

   :    : 

    1 possible choice for the 52nd card. 

By product rule: 52 × 51 × 50 × … × 2 × 1 = 52! 

A permutation or 

arrangement of  n objects is 

an ordering of  the objects 

The number of  permutations 

of  n distinct objects is n! 
267 

(26 choices for each 

of the 7 positions) 

How many sequences of  

7 letters are there? 
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How many sequences of  

7 letters contain at least 

two of  the same letter? 

267 - 26×25×24×23×22×21×20
   

number of sequences 

containing  

all different letters 

The Difference Principle 

Sometimes it is easiest to 

count the number of  

objects with property Q, by 

counting the number of  

objects that do not have 

property Q. 

If  10 horses race, how many 

orderings of  the top three 

finishers are there? 

10 × 9 × 8 = 720 

Number of  ways of  ordering or 

arranging r out of  n objects 

n choices for first place, n-1 choices for 

second place, . . . 

n × (n-1) × (n-2) ×…× (n-(r-1)) 

n! 

(n-r)! 
= 

From a deck of 52 cards how many ordered 

pairs can be formed? 

52 × 51 

How many unordered pairs? 

(52×51) / 2   divide by overcount 

Each unordered pair is listed twice 

on a list of  the ordered pairs 

Ordered Versus Unordered 

From a deck of 52 cards how many ordered 

pairs can be formed? 

52 × 51 

How many unordered pairs? 

(52×51) / 2   divide by overcount 

We have a 2-1 map from ordered pairs to 

unordered pairs. 

Hence #unordered pairs = (#ordered pairs)/2 

Ordered Versus Unordered 

Ordered Versus Unordered 

How many ordered 5 card sequences 

can be formed from a 52-card deck? 

52 × 51 × 50 × 49 × 48 

How many orderings of 5 cards? 

5! 

How many unordered 5 card hands? 

(52×51×50×49×48)/5!  = 2,598,960 

n “choose” r 

A combination or choice of  r out 

of  n objects is an (unordered) set 

of  r of  the n objects 

The number of r combinations of n objects: 

n! 

r!(n-r)! 
= 

n 

r 

The number of subsets of 

size r that can be formed 

from an n-element set is: 

n! 

r!(n-r)! 
= 

n 

r 
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Choosing position i for the first 0 and 

then position j for the second 0  

gives same sequence as  

choosing position j for the first 0 and 

then position i for the second 0 

2 ways of  

generating the 

same object! 

How Many 8-Bit Sequences 

Have 2 0’s and 6 1’s? 

Tempting, but incorrect: 

 8 ways to place first 0, times 

 7 ways to place second 0 

Violates condition 2 of product rule! (uniqueness)  

How Many 8-Bit Sequences 

Have 2 0’s and 6 1’s? 

1. Choose the set of 2 positions to put 

the 0’s. The 1’s are forced. 

8 
2 

2. Choose the set of 6 positions to put the 

1’s. The 0’s are forced. 

8 
6 

“# of ways to pick r out of n elements” 

= 

“# of ways to choose the (n-r) elements to omit” 

Symmetry In The Formula 

n! 

r!(n-r)! 
= 

n 

n-r 

n 

r 
= 

Counting Cards 

4 × 1176 = 4704 

4 
3 

49 
2 

= ways of picking 3 out of 4 aces 

= ways of picking 2 cards out of the 

remaining 49 cards 

How Many Hands Have at Least 3 As? 

= ways of picking 2 cards  out of 

the 48 non-ace cards 

4 

× 1128 

4512 

 

+ 48 

4560 

How Many Hands Have at Least 3 As? 

How many hands have exactly 3 aces? 

= ways of picking 3 out of 4 aces 4 

3 

48 

2 

How many hands have exactly 4 aces? 

= ways of picking 4 out of 4 aces 
4 

4 

= ways of picking 1 cards out of 

the 48 non-ace cards 

48 

1 

4704  4560 

At least one of  

the two counting 

arguments is not 

correct! 
A A A    A K 

A A A    A K 

A A A    A K 

A A A    A K 

Four Different Sequences of  

Choices Produce the Same Hand 

= 4 ways of picking 3 out of 4 aces 

= 1176 ways of picking 2 cards out of 

 the remaining 49 cards 

4 

3 

49 

2 

Is the other argument 

correct? How do I 

avoid fallacious 

reasoning? 
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REVERSIBILTY 

CHECK: 

For each object 

can I reverse 

engineer the 

unique sequence 

of choices that 

constructed it? 
A A A    A K 

A A A     A K 
A A A    A K 

A A A    A K 

A A AA K 

Scheme I 

1. Choose 3 of 4 aces 

2. Choose 2 of the remaining cards 

For this hand – you can’t reverse to a 

unique choice sequence. 

A A Q A K 

Scheme II 

1. Choose 3 out of 4 aces 

2. Choose 2 out of 48 non-ace cards 

REVERSE TEST: Aces came from choices in (1) 

 and others came from choices in (2) 

The three big mistakes people 

make in associating a choice 

tree with a set S are: 

 

1. Creating objects not in S 

 

2. Missing out some objects 

from the set S 

 

3. Creating the same object two 

different ways 

DEFENSIVE THINKING 

ask yourself: 

 

Am I creating objects of  the 

right type? 

 

Can I create every object of  

this type?  

 

Can I reverse engineer my 

choice sequence from any 

given object? 

A group of rabbits are playing outside 

their individual burrows when they are 

surprised by an eagle.  

 

Each rabbit escapes down to a random 

hole, one rabbit per hole.  

 

What is the chance that no rabbit is in 

its own individual hole? 

How many ways are there for the  

rabbits to reorganize while avoiding  

their own hole? 

Ai = set of permutations of six rabbits  

 where i’th rabbit ends up in its hole 

Use inclusion-exclusion. 
|Ai| =  5! 

|Ai  Aj| =  4! 

|Ai  Aj  Ak| =  3! 

How many ways to 
rearrange the letters in the 
word “SYSTEMS”? 

SYSTEMS 

7 places to put the Y,  

 

6 places to put the T,  

5 places to put the E,  

4 places to put the M, 

  

 and the S’s are forced 

7 X 6 X 5 X 4 = 840 

_,_,_,_,_,_,_ 
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SYSTEMS 

Let’s pretend that the S’s are distinct: 

S1YS2TEMS3 

There are 7! permutations of S1YS2TEMS3 

 
But when we stop pretending we see that 

we have counted each arrangement of 

SYSTEMS 3! times, once for each of 3! 

rearrangements of S1S2S3 

7! 

3! 
= 840 

Arrange n symbols: r1 of  type 1, 

r2 of  type 2, …, rk of  type k 

n 

r1 

n-r1 

r2 

… 
n - r1 - r2 - … - rk-1 

rk 

n! 

(n-r1)!r1! 

(n-r1)! 

(n-r1-r2)!r2! 
= … 

= 
n! 

r1!r2! … rk! 

How many ways to 
rearrange the letters in 
the word 
“CARNEGIEMELLON”? 

14! 

2!3!2! 
= 3,632,428,800 

Multinomial Coefficients 







 










!!...rr!r

n!
nr...rr if 0,

r;...;r;r

n

k21

k21

k21

Four ways of choosing 

We will choose 2 leters from the alphabet 

(L,U,C,K,Y} 

 

1)              no repetitions,  

                the order is NOT important 

                  LU = UL 










2

5

Four ways of choosing 

We will choose 2 letters from the alphabet 

(L,U,C,K,Y} 

 

2) P(5,2)  no repetitions,  

                the order is important 

                LU != UL 

    P(n,r)=n*(n-1)*…*(n-r+1) 

Four ways of choosing 

We will choose 2-letters word from the 

alphabet (L,U,C,K,Y} 

 

3) 52 =25 with repetitions,  

                the order is important 

                 

Four ways of choosing 

We will choose 2-letter words from the 

alphabet {L,U,C,K,Y} 

 

4) ????      Repetitions allowed,  

                  the order is NOT important 

+ |{LL,UU,CC,KK,YY}| = 15 








2

5

What if we choose 3-letter words from the 

alphabet {L,U,C,K,Y} 

 

 allow repetitions,  

                  the order is NOT important 

+ 5 + 








3

5
2*









2

5
= 35 

What about 5-letter words? 

20-letter words? 
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5 distinct pirates want to 
divide 20 identical, indivisible 
bars of gold. How many 
different ways can they divide 
up the loot? 
 

GG/G/GG/GGGGGGGGGGGGGG/G 

Sequences with 20 G’s and 4 /’s 

1st pirate gets 2 

2nd pirate gets 1 

3rd gets nothing (this is allowed!) 

4th gets 16 

5th gets 1 

 

GG/G//GGGGGGGGGGGGGGGG/G 
represents  the following division among the 

pirates 

Sequences with 20 G’s and 4 /’s 

GG/G//GGGGGGGGGGGGGGGG/G 
 

In general, the jth pirate gets the number of 
G’s after the j-1st / and before the jth /.  
 
This gives a correspondence between 
divisions of the gold and sequences with  
20 G’s and 4 /’s. 

How many different ways to divide 

up the loot? 

  

 

24

4

 

 
 

 

 
 

20 5 -1

5 -1

 

 
 

 

 
 

How many sequences with 20 G’s and 4 

/’s? 

How many different ways 
can k distinct pirates 
divide n identical, 
indivisible bars of gold? 








 








 

n

1kn

1-k

1-kn

How many different ways to throw n 

indistinguishable  balls  into  k 

distinguishable  bins? 








 








 

n

1kn

1-k

1-kn

Another interpretation 

How many integer solutions to the 

following equations? 

0x,x,x,x,x

20xxxxx

54321

54321





Another interpretation 

Think of xk as being the number 

of gold bars that are allotted 

to pirate k. 

24
 

4




 

How many integer nonnegative 
solutions to the following 
equations? 

mxxx r21  ...








 








 

m

1r m

1-r

1-rm

How many integer positive 

solutions to the following 

equations? 
x1 + x2 + x3 + … + xk = n 

 x1, x2, x3, …, xk > 0 

bijection with solutions to 

y1 + y2 + y3 + … + yk = n-k 

y1, y2, y3, …, yk ≥ 0 

Think of  xi -> yi+1 

n-1 

k-1 
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Remember to distinguish between 

Identical / Distinct Objects 

If  we are putting n objects into  

k distinct bins. 

n objects are  

distinguishable 

n objects are  

indistinguishable 

n+k-1 
k-1 

kn 

Partition and Difference Methods 
      Principle of  Inclusion and Excl. 

Correspondence Principle 
If  two finite sets can be placed into 
1-1 onto correspondence, then they 
have the same size 

 

Choice Tree 

Product Rule 
Two conditions 

Reverse Test 

 
Binomial & multinomial 
coefficient 

Study guide 

Supplement: 

Testing your counting with 

Poker Hands 

52 Card Deck, 5 card hands 

4 possible suits: 

 

13 possible ranks: 

2,3,4,5,6,7,8,9,10,J,Q,K,A 

Pair: set of two cards of the same rank 

Straight: 5 cards of consecutive rank 

Flush: set of 5 cards with the same suit 

Ranked Poker Hands 

Straight Flush: a straight and a flush 

4 of a kind: 4 cards of the same rank 

Full House: 3 of one kind and 2 of another 

Flush: a flush, but not a straight 

Straight: a straight, but not a flush 

3 of a kind: 3 of the same rank, but not 

a full house or 4 of a kind 

2 Pair: 2 pairs, but not 4 of a kind or a full house 

A Pair 

Straight Flush 

9 choices for rank of lowest card at  

the start of the straight 

4 possible suits for the flush 

9 × 4 = 36 

52 

5 

36 
= 

36 

2,598,960 
= about 1 in 72193 chance 

4 of  a Kind 

13 choices of rank 

48 choices for remaining card 

13 × 48 = 624 

52 

5 

624 
= 

624 

2,598,960 
= 1 in 4165 

4 × 1287 

= 5148 

Flush 

4 choices of suit 

13 

5 
choices of cards 

“but not a straight flush…” - 36 straight 

 flushes 

5112 flushes 
5,112 

= 1 in 508.4… 
52 

5 

9 × 1024 

= 9216 

9 choices of lowest card 

45 choices of suits for 5 cards 

“but not a straight flush…” - 36 straight 

 flushes 

9180 straights 
9,180 

= 1 in 208.1… 
52 

5 

Straight 
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Hand Number 

Straight Flush:  36 

Four of  a Kind:  624 

Full House:  3,744 

Flush:  5,112 

Straight:  9,180 

Three of  a Kind:  54,912 

Two Pair: 123,552 

One Pair:  1,098,240 

Nothing: 1,302,540 

2,598,960 


