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15-251: Great Theoretical Ideas in Computer Science 

Axiomatic Systems & Logic 

Fall 2014, Lecture 3  Venkat Guruswami 

⇒ 

P, P  Q 

Q 

I (Venkat) will be giving the next 6 lectures  
(3 weeks): Logic, Proofs, Counting, Games. 

Administrative stuff 

My office hours:  
   Thursdays, 1:15-2:45pm (before class) 

The class is full, so not accepting people from waitlist 

(this could change after HW 1 is due) 

 

People high on waitlist can submit HW1 via email to  

correspondent TA as instructed by Prof. Adamchik. 

You’re also welcome to sign up for Piazza. 

In mathematics, sometimes your intuition 
 can be quite wrong. 

Here’s a theorem  (called  
Banach -Tarski paradox): 

A solid ball in 3-dimensions can be cut up into  

six  non-overlapping  pieces,  

so that these pieces can be moved around & assembled  

into two identical copies of the original ball. 

So it is important to: 

Formalize concepts, give precise definitions 

Make implicit assumptions explicit 

Write careful proofs, where every step can 
 be checked carefully. 

Even “mechanically” 

using a “computing machine”, if you will 

Part 1:  Axiomatic systems.  
 

Part 2:  Propositional logic.  
 
Part 3:  First order logic. (just some basics) 

This week, we will talk a bit about  

formal logical reasoning and proofs. 

TODAY 
Axiomatic Systems 
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An ATM has $2 bills and $5 bills 

What dollar amounts can it dispense? 

2 
5 

7 = 2+5 
4 = 2+2 

10 = 5+5   
 

6 = 4+2 
8 = 6+2 

10 = 8+2   
12 = 10+2   

 

…all even amounts 

  9 = 4+5 
11 = 6+5 
13 = 8+5 

  15 = 10+5 
 

…any odd amount at least 5 
 

Cannot make 1 or 3 
 

 
∴ All m in N except 0, 1, 3. 

This is an example of an axiomatic system. 

“If you can make x and y,  
  you can make x+y.” 

“deduction rule” 

The quantities you can make: “theorems” 

x is a “theorem” 
⇔   

x ≠ 0,1,3 

Initial amounts (2 & 5):  “axioms” 

In this axiomatic system: 

Different axioms  ⇒  Different theorems 

axioms = {0,2}: 

⇒  theorems = all even natural #’s 

axioms = {10,30}: 

⇒  theorems = all positive multiples of 10 

axioms = {2,3}: 

⇒  theorems = all natural #’s except 0,1 

Another axiomatic system 

 deduction rules: WRAP: from S,      deduce (S) 
 

CONCAT: from S, T,  deduce ST 

(),   (()),   ((())),   (((()))), … 

()(),   ()()(),   ()(()), … 

()  axiom: 

“Vocabulary”: all strings using symbols (,) 

 theorems: 

1. () axiom 

2. (()) WRAP line 1 

3. ()(()) CONCAT lines 1,2 

4. (()(())) WRAP line 3 

Deduction: 

Example: Show that  (()(()))  is a theorem. 

Each line (theorem) either an axiom, or is formed  
by applying deduction rule to previous theorems. 

Example: Show that  ()))  is NOT a theorem. 

Claim:  any theorem has equally many ( and ) 

Proof sketch:   
 True for the axiom. 
 WRAP:      If S has equally many, so does (S) 
 CONCAT:  If S, T have equal, so does ST 

Formal proof:   
 

 structural induction 
 (or strong induction on # of steps in deduction) 
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For k ≥ 1, let Fk be the statement “any theorem derived in exactly k lines has equally many (,)”. 
 

The base case is k = 1.  F1 is true because a 1-line deduction must be an axiom, and the only axiom, (), has 

equally many (,). 
 

For general k > 1, let us suppose that F i is true for all 1 ≤ i < k.  For the induction step, we must show that Fk 
is true. 
 

So suppose W is a theorem derived at the end of a k-line deduction.  
 

The final line of this deduction (which derives W) is either an axiom, an application of WRAP to some previous 
line j < k, or an application of CONCAT to some two previous lines, j1, j2 < k. We verify that W has equally 
many (,) in all three cases. 
 

In case the kth line is an axiom, W must be (), which has equally many (,). 
 

In case the kth line is WRAP applied to line j < k, we have W = (S), where S is the theorem on line j.  Since Fj 
is true by assumption, S has the same number of (,) — say c each.   Then W has c+1 many ( and c+1 many ), 
an equal number. 
 

In case the kth line is CONCAT applied to lines j1, j2 < k, we have W = T1T2 where T1 is the theorem on line j1 
and T2 is the theorem on line j2.  Since F j1 is true by assumption, T1 has the same number of (,) — say d1 
each.  Similarly T2 has the same number of (,) — say d2 each.  Hence W has d1+d2 many ( and d1+d2 many ), 
an equal number. 
 

In each of the three cases we have shown W has an equal number of (,). Thus Fk is indeed true.  The 
induction is complete. 

For comparison, here is a proof by induction… 

Exercise: Write a formal proof using structural induction. 
Soundness and Completeness 

Truth concept  [a subset of strings over (,) ]:  
   “There are equal numbers of ( and ) in the string” 

This axiomatic system is “sound” for above  
truth concept. 

• All theorems are “true” 

Is it “complete” for above truth concept? 

• i.e., are all “true” strings also theorems? 
 

  

Answer:  No. 

Question:  Is ())(() a theorem? 

Claim:  a string of (,) is a theorem in this system 
        if and only if 
   it’s a sequence of “balanced parentheses”. 

Proof:  Exercise (or ask one of the course staff) 

That is, this axiomatic system is sound & complete 
for the truth concept: “The parens are balanced” 

• Vocabulary (or universe)  (numbers, strings, ti les, graphs, …)
 

    Elements called expressions. 

Axiomatic systems:  summary 

• Axioms:  initial set of expressions. 

• Deduction rules:  rules for obtaining new  
                            expressions from old ones. 

• Theorem:  an obtainable expression. 

• Typical problems: Is X a theorem?  
                  Show Y is not a theorem.  

 Is it sound/complete for some “truth” concept? 
          “Characterize” the set of all theorems. 
 

Logic 

Logic: a formal game played with symbols  
  which turns out to be useful for 
  modeling mathematical reasoning. 

Math:         a formal game played with symbols  
  which turns out to be useful for  
  modeling the world. 

0th order logic 
 

AKA propositional logic 
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A model for a simple subset  

of mathematical reasoning 

“Not, And, Or, Implies, If And Only If” 

An English 
statement that can 

be true or false 

Propositional variable: 
a symbol (letter) 
representing it 

“Potassium is observed.”  k  

“Pixel 29 is black.”  p29 

“It’s raining.” r 

“Hydrogen is observed.”  h 

Potassium is not observed.  ¬k 

If  I’m not in 251 lecture then 

  I’m preparing the lecture, and  

  if  I’m not preparing the lecture  

then I’m thinking about HW problems 

((¬l→p)∧(¬p→w)) 

Compound sentence Propositional formula 

At least one of hydrogen and  

   potassium is observed. 
(h∨k) 

If potassium is observed  

  then hydrogen is also  

  observed. 

(k→h) 

Formally, formulas are strings made up of: 

( 
) 
¬ 
∧ 
∨ 
→ 
↔ 

x1, x2, x3, … 

(punctuation) 
(punctuation) 

(not) 
(and) 
(or) 

(implies) 
(if and only if) 

(variable symbols) 

Propositional formula 

= A string which is syntactically “legitimate”. 

Propositional formula not a prop. formula 

x1 

 

((x1∧(x3→¬x2))∨x1) 
 

¬((x10↔x11)∧(x2→x5)) 

x1∧ 
 

))x2→→ 
 

((x1∧(x3→¬x2))¬x1) 

Formally, propositional formulae are defined  
by an axiomatic system! 

Propositional formulae 

from A,  can obtain ¬A 
from A, B can obtain (A∧B)  
                                  (A∨B)  
                                  (A→B)  
                                  (A↔B) 

 

 deduction rules: 

 axioms:  x1, x2, x3, … 

Definition:   A formula is a propositional formula  
    (aka “well-formed” formula (WFF))   

 if and only if  it is a ‘theorem’ in this system. 

The “meaning” of these connectives 

(AB)    “A and B” (AB)     “A or B” 

A “not A” 

true if both A and B  
are true 

true if at least one of 
A and B is true 

true if A is false 

A B AÆB 

T T T 

T F  F  

F  T F  

F  F  F  

A B A   B 

T T T 

T F T 

F T T 

F  F  F  

A A 

T F 

F T 
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The “meaning” of these connectives 

(A  B) “if A then B” 

 (AB) “A if and only if B” 

what are the rules for this? 

A B AB 

T T T 

T F  F 

F  T T 

F  F  T 

“A implies B” 

same as (AB) and (BA) 

A B AB 

T T T 

T F  F  

F  T F  

F  F  T 

Equivalent to (A Ç B) Let’s talk about TRUTH. 

“If potassium is observed then  
carbon and hydrogen are also observed.” 

(k→(c∧h)) 

Q: Is this statement true? 

A: Depends. The question is ill specified. 

Whether this statement/formula is true/false 
depends on whether the variables are true/false 

(“state of the world”). 

If k = T, c = T, h = F… 
 … the formula is False. 

“If potassium is observed then  
carbon and hydrogen are also observed.” 

(k→(c∧h)) 

If k = F, c = F, h = T… 
 … the formula is True. 

Truth assignment V :   
 

 assigns T or F to each variable 

Extends to give a truth value V  [S] for any formula S  
by (recursively) applying these rules: 

A B ¬A (A∧B) (A∨B) (A→B) (A↔B) 

F F T F F T T 

F T T F T T F 

T F F F T F F 

T T F T T T T 

Recursive Evaluation for S 

eval(formula S, input V from {T,F}n) 
{ 
 If (S == “T”) return T; 
 if  (S == “F”) return F; 
 if (S == “S1 Æ S2”) 
       return eval(S1,V) Æ eval(S2,V); 
 … 
 … 
}  
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x1 = T 
x2 = T 
x3 = F 

V : 

Truth assignment example 

S = (x1→(x2∧x3)) 

V  [S] = (T→(T∧F)) 

V  [S] = (T→F) 

V  [S] = F 

Satisfiability 

V satisfies S:       
 

 V  [S] = T 

S is satisfiable: 
 

 there exists V such that V  [S] = T 

S is unsatisfiable: 
 

 V  [S] = F for all V 

S is valid (AKA a tautology): 
 

 V  [S] = T for all V 

unsatisfiable 

All well-formed formulas 

satisfiable 

valid 

(k∧¬k) 

(h→h) 

(k→(c∧h)) 

“Potassium is observed and potassium is not observed.” 

“If hydrogen is observed then hydrogen is observed.” 

“If potassium is observed then  

carbon and hydrogen are observed.” 

Valid:     automatically true,  

      for ‘purely logical’ reasons 

Unsatisfiable: automatically false, 

         for purely logical reasons 

Satisfiable (but not valid):   
 

        truth value depends  

     on the state of the world 

Example: S = (p Æ (p  q))  q 

p q p  q p Æ (p  q))  (p Æ (p q)) q 

T T 

T F 

F T 

F F 

Truth table 

p q p  q p Æ (p  q))  (p Æ (p  q))  q 

T T T T T 

T F F F T 

F T T F T 

F F T F T 

Truth table 

Formula S is valid! 

Example: S = (p Æ (p  q))  q 
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S = ((x→(y→z))↔((x∧y)→z)) 

Truth table 

x y z ((x→(y→z))↔((x∧y)→z)) 

F F F 

F F T 

F T F 

F T T 

T F F 

T F T 

T T F 

T T T 

S is satisfiable! 

T 

S = ((x→(y→z))↔((x∧y)→z)) 

Truth table 

x y z ((x→(y→z))↔((x∧y)→z)) 

F F F T 

F F T T 

F T F T 

F T T T 

T F F T 

T F T T 

T T F T 

T T T T 

S is valid! 

Deciding Satisfiability (or Validity) 

Truth table method: 

Pro:   Always works 

Con:  If S has n variables, takes ≈ 2n time 

Conjecture: (stronger than P  NP) 

But for a given formula, sometimes you can  
prove/disprove satisfiability cleverly. 

There is no O(1.999n) time algorithm 
that works for every formula. 

Quick recap 

propositional formulas 

n-variable formula maps each  
possible “world” in {T,F}n  into either T or F 

Some formulas are “truths” (tautologies): 
     they are true in all possible 2n worlds 

Can check if a formula is a tautology in ¼ 2n time 
by truth table method. 

((p1  p2)  (p2  p3)  …  (pn-1  pn))  (p1  pn)) 

Does not give much “intuition” 

Even simple things have very long proofs 

Does not scale to non-Boolean proofs. 

If  we want to prove things about 

all the naturals, then we’re in trouble with brute-force. 

 Truth table method for proving tautologies 

SOME CONS 
A “more natural” way to prove things… 

Let us start with a simple tautology 

we’ll call this an “axiom” 

And use one of these rules at each step: 

Whatever we can prove, we’ll call “theorems” 

A Ç (B Ç C) 

(A Ç B) Ç C 

A Ç A 

A 
A 

B Ç A 

(A Ç B), (A Ç C) 

(B Ç C) 

(A Ç A) 

we’ll call these  

“inference rules” 

associativity 

contraction 

expansion 

cut rule 
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Proof of commutativity rule  A Ç B 

B Ç A 

A Ç B    (hypothesis) 

A Ç A    (axiom) 

B Ç A    (cut rule to 1,2) 

(1) 

(2) 

Proof of new expansion rule 

A     (hypothesis) 

B Ç A    (expansion rule) 

A Ç B     (commutativity) 

A 

A Ç B 

Proof of “modus ponens” A, A  B 

B 

A     (hypothesis) 

A  B     (hypothesis) 

A Ç B     (def. of ) 

A Ç B   (apply expansion to 1) 

B Ç B    (cut rule to 2,3) 

B     (contraction) 

Since the logical system does not have “” 

 we define it to be A Ç B 

(1) 

(2) 

(3) 

What is a proof? 

A sequence of statements, 
each of which 

 
is an axiom, 

 
or a hypothesis, 

 
or follows from previous statements 

using an inference rule 

Recap: A logical System  

    for Propositions 
Axiom: 

Inference Rules: 

A Ç (B Ç C) 

(A Ç B) Ç C 

A Ç A 

A 
A 

B Ç A 

(A Ç B), (A Ç C) 

(B Ç C) 

(A Ç A) 

associativity 

contraction 

expansion 

cut rule 

(well-formed) propositional formulas 

some formulas are 
tautologies (“truths”) 

p Ç  p 

(p Æ (p  q))  q 

some formulas are 
“theorems” 

p Ç  p 

(p Æ (p  q))  q 

can check by  
truth-table 

these are formulas 
for which we  
can give proofs 
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Are all theorems “true” (i.e., tautologies)? 

Are all tautologies theorems? 

Yes. (easy proof by induction) 

Yes.  (proof lot more involved) 

Yay! Our logical system is “sound”. 

 We only prove truths. 

Double yay! Our logical system is “complete”. 

 We can prove all the truths via inference rules. 

For this logical system and propositional formulas 

This logical system is 

 

sound  

 

and  

 

complete 

 

for propositional truths (tautologies) 

“all theorems are true” 

“all truths are theorems” 

For small examples, eg. in your problems,  

you can prove a formula is valid  

by simplifying the formula by hand 

 (similar to calculating arithmetic expressions) 

Proving tautologies by hand 

Prop. formulas S and T are equivalent, written S ≡ T, 

   if V[S] = V[T] for all truth-assignments V.  

⇒ their satisfiability/validity is the same 

Logical Equivalence 

Definition: 

Example equivalences 

¬(x∧y) ≡ (¬x∨¬y) 

¬(A ∨ B) ≡ (¬A ∧ ¬B) 

A→B ≡ (¬A∨B) 

(A∨B) ≡ (B∨A) 

((A∨B)∨C) ≡ (A∨(B∨C)) 

remark: so it’s okay to write (A∨B∨C) 

A∨A ≡ A 

¬¬A ≡ A 

A↔B ≡ ((A→B)∧(B→A)) 

((A∧B)∨C) ≡ ((A∨C)∧(B∨C)) 

etc. 

    (((x→y)∧x)→y) 

≡ ¬((x→y)∧x)∨y 

≡ (¬(x→y)∨¬x)∨y 

≡ ¬(x→y)∨(¬x∨y) 

≡ ¬(¬x∨y)∨(¬x∨y) 

= ¬S∨S,    where S = (¬x∨y). 
 

And a formula of form ¬S∨S is clearly valid. 

Problem:    Show that (((x→y)∧x)→y) is valid. 

Solution 1:  Truth-table method 

(using         A→B ≡ ¬A∨B       ) 
 

(using    ¬(A∧B) ≡ ¬A∨¬B    ) 
 

(using   (A∨B)∨C ≡ A∨(B∨C)  ) 
 

(using         A→B ≡ ¬A∨B       ) 

Solution 2:  Use equivalences: 
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First order logic 

A model for pretty much all 

mathematical reasoning 

“Not, And, Or, Implies, If And Only If” 

Plus:  Quantifiers: For All (∀),  There Exists (∃)   

  Equals (=) 

 “constants”,  “relations”,  “functions” 

Variables like x now represent  
objects, not truth-values. 

“Ben is taller than everyone”: 

∀x IsTaller(Ben,x) 

relation name:   
    stands for a mapping,  
    object(s) ↦ T/F 

constant name:   
    stands for a  
    particular object 

variable:   
    stands for an  
    object (person) 

“Ben is taller than everyone”: 

∀x IsTaller(Ben,x) 

“Ben is taller than everyone else”: 

∀x (¬(x=a)→ IsTaller(Ben,x)) 
 

equality  (of objects) 

0th order logic, as usual 

“Ben’s dad is taller than everyone else’s dad”: 

∀x (¬(x=Ben)→ IsTaller(Father(Ben),Father(x))) 

function name:   
    stands for a mapping,  
    object(s) ↦ object 

“Ben is taller than everyone”: 

∀x IsTaller(Ben,x) 

“Ben is taller than everyone else”: 

∀x (¬(x=Ben)→ IsTaller(Ben,x) 
 

Vocabulary:   A collection of  constant-names,  
                                                          function-names, 
                                                             relation-names. 

Vocabulary from the previous slide: 

one constant-name:     Ben 

one function-name:    Father(∙) 

one relation-name:       IsTaller(∙, ∙) 
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Vocabulary:   A collection of  constant-names,  
                                                          function-names, 
                                                             relation-names. 

Another example of a vocabulary: 

Example “sentences”: 

one constant-name:     a 

two function-names:    Next(∙),   Combine(∙, ∙) 

one relation-name:       IsPrior(∙, ∙) 

∃x (Next(x)=a) 

∀x ∀y (IsPrior(x,Combine(a,y)) → (Next(x)=y)) 

(∀x IsPrior(x,Next(x))) → (Next(a)=Next(a)) 

Let’s talk about TRUTH. 

Q: Is this sentence true? 

A: The question does not make sense. 

∃x (Next(x)=Combine(a,a)) 

Whether or not this sentence is true  
depends on the interpretation of the vocabulary. 

Interpretation: 

Informally, says what objects are  

and what the vocabulary means. 

Q: Is this sentence true? 

A: The question does not make sense. 

∃x (Next(x)=Combine(a,a)) 

Whether or not this sentence is true  
depends on the interpretation of the vocabulary. 

Interpretation: 

 Specifies a nonempty set (“universe”) of objects. 

 Maps each constant-name to a specific object. 

 Maps each relation-name to an actual relation. 

 Maps each function-name to an actual function. 

∃x (Next(x)=Combine(a,a)) 

Interpretation #1: 

• Universe = all strings of 0’s and 1’s 

• a = 1001 

• Next(x) = x0 

• Combine(x,y) = xy 

• IsPrior(x,y) = True  iff  x is a prefix of y 

For this interpretation,  

the sentence is…  …False 

∃x (Next(x)=Combine(a,a)) 

Interpretation #2: 

• Universe = integers 

• a = 0 

• Next(x) = x+1 

• Combine(x,y) = x+y 

• IsPrior(x,y) = True  iff  x < y 

For this interpretation,  

the sentence is…  …True 
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∃x (Next(x)=Combine(a,a)) 

Interpretation #2: 

• Universe = natural numbers 

• a = 0 

• Next(x) = x+1 

• Combine(x,y) = x+y 

• IsPrior(x,y) = True  iff  x < y 

For this interpretation,  

the sentence is…  …False 

Satisfiability / Validity 

Interpretation I satisfies sentence S:       
 

  I [S] = T 

S is satisfiable: 
 

 there exists I such that I [S] = T 

S is unsatisfiable: 
 

 I [S] = F for all I 

S is valid: 
 

 I [S] = T for all I 

unsatisfiable 

All sentences in a given vocabulary 

satisfiable 

valid 

∃x ¬(Next(x)=Next(x)) 

∃x (Next(x)=Combine(a,a)) 

(∀x(x=a))→(Next(a)=a) 

Valid:     automatically true,  

      for ‘purely logical’ reasons 

Unsatisfiable: automatically false, 

         for purely logical reasons 

Satisfiable (but not valid):   
 

        truth value depends  

     on the interpretation 

     of the vocabulary 

Problem 1:  Show this is satisfiable. 

(∃y ∀x (x=Next(y))) → (∀w ∀z (w=z)) 

Now (∃y ∀x (x=Next(y))) means 
 
  

“there’s an integer y such  
that every integer = y+1”. 

Let’s pick this interpretation: 

Universe = integers,    Next(y) = y+1. 

That’s False!   
So the whole sentence becomes True. 

Hence the sentence is satisfiable. 

Problem 2:  Is it valid? 

(∃y ∀x (x=Next(y))) → (∀w ∀z (w=z)) 

There is no “truth table method”. 

You can’t enumerate all possible interpretations! 

You have to use some cleverness. 
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Problem 2:  Is it valid? 

(∃y ∀x (x=Next(y))) → (∀w ∀z (w=z)) 

Solution:     Yes, it is valid! 

Proof: Let I be any interpretation. 
 

If I [∃y ∀x (x=Next(y))] = F, 

        then the sentence is True. 
 

If I [∃y ∀x (x=Next(y))] = T, 

        then every object equals Next(y).  
 

In that case, I [∀w ∀z (w=z)] = T. 
 

So no matter what, I [the sentence] = T. 

Axiomatic System for Validity? 

Can we find axioms & deduction rules so that  
set of theorems = set of valid sentences ? 

A ridiculous way: 
Let axioms = “set of all valid sentences”. 

That is dumb because we at least want an  
algorithmic way to check if  

a given expression is an axiom. 

Axiomatic System for Validity? 

Open any textbook on logic. 
You’ll see an axiomatic system like this: 

 deduction rule: 

 axioms: 1.  A∨¬A     for any sentence A 

2.  any 0th-order tautology,  

   with sentences for variables 

3. ∀x ∀y ((x=a∧y=b)→(Func(x,y)=Func(a,b))) 

4. IsR(a)→(∃x IsR(x)) 

5. blah blah blah, bunch more obviously valid 

    kinds of sentences    (algorithmically checkable) 

from A and A→B can deduce B 

Axiomatic System for Validity? 

 deduction rule: 

 axioms: 1.  A∨¬A     for any sentence A 

2.  any 0th-order tautology,  

   with sentences for variables 

3. ∀x ∀y ((x=a∧y=b)→(Func(x,y)=Func(a,b))) 

4. IsR(a)→(∃x IsR(x)) 

5. blah blah blah, bunch more obviously valid 

    kinds of sentences    (algorithmically checkable) 

from A and A→B can deduce B 

Let’s call this the 
“LOGIC TEXTBOOK” axiomatic system. 

Axiomatic System for Validity? 

Let’s call this the 
“LOGIC TEXTBOOK” axiomatic system. 

(Usually called a  
“Hilbert axiomatic system”) 

His PhD thesis:   Yes! 
 

Easy claim:    any ‘theorem’ is valid sentence. 

Question:  is every valid sentence a ‘theorem’? 

Kurt Gödel 

“Gödel’s COMPLETENESS Theorem” 
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Consequence: 

There is a computer algorithm which 
finds a proof of any valid logical sentence. 

The set of logically valid sentences 
is interesting, but it’s not THAT interesting. 

1. Think of some universe you want to reason about. 

2. Invent an appropriate vocabulary  

   (constants, functions, relations). 

3. ADD in some axioms which are true under the interpretation 

you have in mind. 

4. See what you can deduce! 

 

More typical use of first order logic: 

Example 1:   Euclidean geometry 

∀x1 ∀x2        IsSameLength(x1,x2,x2,x1) 

∀x ∀y ∀z     IsSameLength(x,y,z,z)→(x=y) 

∀x ∀y        IsBetw een(x,y,x)→(y=x) 

“Segment Extension”: ∀x1,x2,y1,y2  

    ∃z IsBetw een(x1,x2,z)∧IsSameLength(x2,z,y1,y2) 

… 7 more …  

constant-names, function-names: none 

relation-names: IsBetween(x,y,z) 
IsSameLength(x1,x2,y1,y2) 

extra axioms: Alfred Tarski 

Cool fact:  this deductive system 
is complete for Euclidean geometry. 

I.e., every true statement about  
Euclidean geometry is provable in this system. 
     “Decidability of the theory of real closed fields” 

Euclid 

Example 2:   Arithmetic of ℕ 

∀x ¬(Successor(x)=0) 

∀x ∀y (Successor(x)=Successor(y))→(x=y) 

∀x Plus(x,0)=x 

∀x ∀y Plus(x,Successor(y))=Successor(Plus(x,y)) 

∀x Times(x,0)=0 

∀x ∀y Times(x,Successor(y))=Plus(Times(x,y),x) 

“Induction:”  For any parameterized formula F(x), 

          (F(0)∧(∀x F(x)→F(Successor(x)))) → ∀x F(x) 

function-names: Successor(x) 
Plus(x,y) 
Times(x,y) 

extra axioms: 

constant-name: 0 

Giuseppe Peano 

Peano arithmetic is sound  
(i.e., every ‘theorem’ is a valid statement  
 about arithmetic of natural numbers)  

Is it complete for truths about natural numbers? 
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We’ll be back… Example 3:   Set theory 

∀x ∀y ( (∀z   z∈x ↔ z∈y)  →  x = y ) 

∀x ∀y ∃z (x∈z ∧ y∈z) 

… 7 more axiom/axiom families …  

constant-names, function-names: none 

relation-name: IsElementOf(x,y) 
[“x∈y”] 

extra axioms, catchily known as “ZFC”: 

Empirical observation:   
 Almost all true statements about MATH 
 can be formalized & deduced in this system. 

Including every single fact we will prove 

in 15-251 (though we will work at a 

“higher level” of abstraction) 

Axiomatic systems: 

   definitions of axiom,  
   deduction rules,  
   theorems 

   soundness & completeness 

0th-order logic:  
   propositional formulas 

   truth assignments 

   valid/satisf iable 

   truth-table method 

   equivalences 

 

1st-order logic: 

   understand examples 

   interpretations 

   valid/satisfiable 

  

Study Guide 


