
1

15-251: Great Theoretical Ideas in Computer Science

Axiomatic Systems & Logic

Fall 2014, Lecture 3 Venkat Guruswami

⇒

P, P  Q

Q

I (Venkat) will be giving the next 6 lectures
(3 weeks): Logic, Proofs, Counting, Games.

Administrative stuff

My office hours:
 Thursdays, 1:15-2:45pm (before class)

The class is full, so not accepting people from waitlist

(this could change after HW 1 is due)

People high on waitlist can submit HW1 via email to

correspondent TA as instructed by Prof. Adamchik.

You’re also welcome to sign up for Piazza.

In mathematics, sometimes your intuition
 can be quite wrong.

Here’s a theorem (called
Banach -Tarski paradox):

A solid ball in 3-dimensions can be cut up into

six non-overlapping pieces,

so that these pieces can be moved around & assembled

into two identical copies of the original ball.

So it is important to:

Formalize concepts, give precise definitions

Make implicit assumptions explicit

Write careful proofs, where every step can
 be checked carefully.

Even “mechanically”

using a “computing machine”, if you will

Part 1: Axiomatic systems.

Part 2: Propositional logic.

Part 3: First order logic. (just some basics)

This week, we will talk a bit about

formal logical reasoning and proofs.

TODAY
Axiomatic Systems

2

An ATM has $2 bills and $5 bills

What dollar amounts can it dispense?

2
5

7 = 2+5
4 = 2+2

10 = 5+5

6 = 4+2
8 = 6+2

10 = 8+2
12 = 10+2

…all even amounts

 9 = 4+5
11 = 6+5
13 = 8+5

 15 = 10+5

…any odd amount at least 5

Cannot make 1 or 3

∴ All m in N except 0, 1, 3.

This is an example of an axiomatic system.

“If you can make x and y,
 you can make x+y.”

“deduction rule”

The quantities you can make: “theorems”

x is a “theorem”
⇔

x ≠ 0,1,3

Initial amounts (2 & 5): “axioms”

In this axiomatic system:

Different axioms ⇒ Different theorems

axioms = {0,2}:

⇒ theorems = all even natural #’s

axioms = {10,30}:

⇒ theorems = all positive multiples of 10

axioms = {2,3}:

⇒ theorems = all natural #’s except 0,1

Another axiomatic system

 deduction rules: WRAP: from S, deduce (S)

CONCAT: from S, T, deduce ST

(), (()), ((())), (((()))), …

()(), ()()(), ()(()), …

() axiom:

“Vocabulary”: all strings using symbols (,)

 theorems:

1. () axiom

2. (()) WRAP line 1

3. ()(()) CONCAT lines 1,2

4. (()(())) WRAP line 3

Deduction:

Example: Show that (()(())) is a theorem.

Each line (theorem) either an axiom, or is formed
by applying deduction rule to previous theorems.

Example: Show that ())) is NOT a theorem.

Claim: any theorem has equally many (and)

Proof sketch:
 True for the axiom.
 WRAP: If S has equally many, so does (S)
 CONCAT: If S, T have equal, so does ST

Formal proof:

 structural induction
 (or strong induction on # of steps in deduction)

3

For k ≥ 1, let Fk be the statement “any theorem derived in exactly k lines has equally many (,)”.

The base case is k = 1. F1 is true because a 1-line deduction must be an axiom, and the only axiom, (), has

equally many (,).

For general k > 1, let us suppose that F i is true for all 1 ≤ i < k. For the induction step, we must show that Fk
is true.

So suppose W is a theorem derived at the end of a k-line deduction.

The final line of this deduction (which derives W) is either an axiom, an application of WRAP to some previous
line j < k, or an application of CONCAT to some two previous lines, j1, j2 < k. We verify that W has equally
many (,) in all three cases.

In case the kth line is an axiom, W must be (), which has equally many (,).

In case the kth line is WRAP applied to line j < k, we have W = (S), where S is the theorem on line j. Since Fj
is true by assumption, S has the same number of (,) — say c each. Then W has c+1 many (and c+1 many),
an equal number.

In case the kth line is CONCAT applied to lines j1, j2 < k, we have W = T1T2 where T1 is the theorem on line j1
and T2 is the theorem on line j2. Since F j1 is true by assumption, T1 has the same number of (,) — say d1
each. Similarly T2 has the same number of (,) — say d2 each. Hence W has d1+d2 many (and d1+d2 many),
an equal number.

In each of the three cases we have shown W has an equal number of (,). Thus Fk is indeed true. The
induction is complete.

For comparison, here is a proof by induction…

Exercise: Write a formal proof using structural induction.
Soundness and Completeness

Truth concept [a subset of strings over (,)]:
 “There are equal numbers of (and) in the string”

This axiomatic system is “sound” for above
truth concept.

• All theorems are “true”

Is it “complete” for above truth concept?

• i.e., are all “true” strings also theorems?

Answer: No.

Question: Is ())(() a theorem?

Claim: a string of (,) is a theorem in this system
 if and only if
 it’s a sequence of “balanced parentheses”.

Proof: Exercise (or ask one of the course staff)

That is, this axiomatic system is sound & complete
for the truth concept: “The parens are balanced”

• Vocabulary (or universe) (numbers, strings, ti les, graphs, …)

 Elements called expressions.

Axiomatic systems: summary

• Axioms: initial set of expressions.

• Deduction rules: rules for obtaining new
 expressions from old ones.

• Theorem: an obtainable expression.

• Typical problems: Is X a theorem?
 Show Y is not a theorem.

 Is it sound/complete for some “truth” concept?
 “Characterize” the set of all theorems.

Logic

Logic: a formal game played with symbols
 which turns out to be useful for
 modeling mathematical reasoning.

Math: a formal game played with symbols
 which turns out to be useful for
 modeling the world.

0th order logic

AKA propositional logic

4

A model for a simple subset

of mathematical reasoning

“Not, And, Or, Implies, If And Only If”

An English
statement that can

be true or false

Propositional variable:
a symbol (letter)
representing it

“Potassium is observed.” k

“Pixel 29 is black.” p29

“It’s raining.” r

“Hydrogen is observed.” h

Potassium is not observed. ¬k

If I’m not in 251 lecture then

 I’m preparing the lecture, and

 if I’m not preparing the lecture

then I’m thinking about HW problems

((¬l→p)∧(¬p→w))

Compound sentence Propositional formula

At least one of hydrogen and

 potassium is observed.
(h∨k)

If potassium is observed

 then hydrogen is also

 observed.

(k→h)

Formally, formulas are strings made up of:

(
)
¬
∧
∨
→
↔

x1, x2, x3, …

(punctuation)
(punctuation)

(not)
(and)
(or)

(implies)
(if and only if)

(variable symbols)

Propositional formula

= A string which is syntactically “legitimate”.

Propositional formula not a prop. formula

x1

((x1∧(x3→¬x2))∨x1)

¬((x10↔x11)∧(x2→x5))

x1∧

))x2→→

((x1∧(x3→¬x2))¬x1)

Formally, propositional formulae are defined
by an axiomatic system!

Propositional formulae

from A, can obtain ¬A
from A, B can obtain (A∧B)
 (A∨B)
 (A→B)
 (A↔B)

 deduction rules:

 axioms: x1, x2, x3, …

Definition: A formula is a propositional formula
 (aka “well-formed” formula (WFF))

 if and only if it is a ‘theorem’ in this system.

The “meaning” of these connectives

(AB) “A and B” (AB) “A or B”

A “not A”

true if both A and B
are true

true if at least one of
A and B is true

true if A is false

A B AÆB

T T T

T F F

F T F

F F F

A B A  B

T T T

T F T

F T T

F F F

A A

T F

F T

5

The “meaning” of these connectives

(A  B) “if A then B”

 (AB) “A if and only if B”

what are the rules for this?

A B AB

T T T

T F F

F T T

F F T

“A implies B”

same as (AB) and (BA)

A B AB

T T T

T F F

F T F

F F T

Equivalent to (A Ç B) Let’s talk about TRUTH.

“If potassium is observed then
carbon and hydrogen are also observed.”

(k→(c∧h))

Q: Is this statement true?

A: Depends. The question is ill specified.

Whether this statement/formula is true/false
depends on whether the variables are true/false

(“state of the world”).

If k = T, c = T, h = F…
 … the formula is False.

“If potassium is observed then
carbon and hydrogen are also observed.”

(k→(c∧h))

If k = F, c = F, h = T…
 … the formula is True.

Truth assignment V :

 assigns T or F to each variable

Extends to give a truth value V [S] for any formula S
by (recursively) applying these rules:

A B ¬A (A∧B) (A∨B) (A→B) (A↔B)

F F T F F T T

F T T F T T F

T F F F T F F

T T F T T T T

Recursive Evaluation for S

eval(formula S, input V from {T,F}n)
{
 If (S == “T”) return T;
 if (S == “F”) return F;
 if (S == “S1 Æ S2”)
 return eval(S1,V) Æ eval(S2,V);
 …
 …
}

6

x1 = T
x2 = T
x3 = F

V :

Truth assignment example

S = (x1→(x2∧x3))

V [S] = (T→(T∧F))

V [S] = (T→F)

V [S] = F

Satisfiability

V satisfies S:

 V [S] = T

S is satisfiable:

 there exists V such that V [S] = T

S is unsatisfiable:

 V [S] = F for all V

S is valid (AKA a tautology):

 V [S] = T for all V

unsatisfiable

All well-formed formulas

satisfiable

valid

(k∧¬k)

(h→h)

(k→(c∧h))

“Potassium is observed and potassium is not observed.”

“If hydrogen is observed then hydrogen is observed.”

“If potassium is observed then

carbon and hydrogen are observed.”

Valid: automatically true,

 for ‘purely logical’ reasons

Unsatisfiable: automatically false,

 for purely logical reasons

Satisfiable (but not valid):

 truth value depends

 on the state of the world

Example: S = (p Æ (p  q))  q

p q p  q p Æ (p  q)) (p Æ (p q)) q

T T

T F

F T

F F

Truth table

p q p  q p Æ (p  q)) (p Æ (p  q))  q

T T T T T

T F F F T

F T T F T

F F T F T

Truth table

Formula S is valid!

Example: S = (p Æ (p  q))  q

7

S = ((x→(y→z))↔((x∧y)→z))

Truth table

x y z ((x→(y→z))↔((x∧y)→z))

F F F

F F T

F T F

F T T

T F F

T F T

T T F

T T T

S is satisfiable!

T

S = ((x→(y→z))↔((x∧y)→z))

Truth table

x y z ((x→(y→z))↔((x∧y)→z))

F F F T

F F T T

F T F T

F T T T

T F F T

T F T T

T T F T

T T T T

S is valid!

Deciding Satisfiability (or Validity)

Truth table method:

Pro: Always works

Con: If S has n variables, takes ≈ 2n time

Conjecture: (stronger than P  NP)

But for a given formula, sometimes you can
prove/disprove satisfiability cleverly.

There is no O(1.999n) time algorithm
that works for every formula.

Quick recap

propositional formulas

n-variable formula maps each
possible “world” in {T,F}n into either T or F

Some formulas are “truths” (tautologies):
 they are true in all possible 2n worlds

Can check if a formula is a tautology in ¼ 2n time
by truth table method.

((p1  p2)  (p2  p3)  …  (pn-1  pn))  (p1  pn))

Does not give much “intuition”

Even simple things have very long proofs

Does not scale to non-Boolean proofs.

If we want to prove things about

all the naturals, then we’re in trouble with brute-force.

 Truth table method for proving tautologies

SOME CONS
A “more natural” way to prove things…

Let us start with a simple tautology

we’ll call this an “axiom”

And use one of these rules at each step:

Whatever we can prove, we’ll call “theorems”

A Ç (B Ç C)

(A Ç B) Ç C

A Ç A

A
A

B Ç A

(A Ç B), (A Ç C)

(B Ç C)

(A Ç A)

we’ll call these

“inference rules”

associativity

contraction

expansion

cut rule

8

Proof of commutativity rule A Ç B

B Ç A

A Ç B (hypothesis)

A Ç A (axiom)

B Ç A (cut rule to 1,2)

(1)

(2)

Proof of new expansion rule

A (hypothesis)

B Ç A (expansion rule)

A Ç B (commutativity)

A

A Ç B

Proof of “modus ponens” A, A  B

B

A (hypothesis)

A  B (hypothesis)

A Ç B (def. of )

A Ç B (apply expansion to 1)

B Ç B (cut rule to 2,3)

B (contraction)

Since the logical system does not have “”

 we define it to be A Ç B

(1)

(2)

(3)

What is a proof?

A sequence of statements,
each of which

is an axiom,

or a hypothesis,

or follows from previous statements

using an inference rule

Recap: A logical System

 for Propositions
Axiom:

Inference Rules:

A Ç (B Ç C)

(A Ç B) Ç C

A Ç A

A
A

B Ç A

(A Ç B), (A Ç C)

(B Ç C)

(A Ç A)

associativity

contraction

expansion

cut rule

(well-formed) propositional formulas

some formulas are
tautologies (“truths”)

p Ç  p

(p Æ (p  q))  q

some formulas are
“theorems”

p Ç  p

(p Æ (p  q))  q

can check by
truth-table

these are formulas
for which we
can give proofs

9

Are all theorems “true” (i.e., tautologies)?

Are all tautologies theorems?

Yes. (easy proof by induction)

Yes. (proof lot more involved)

Yay! Our logical system is “sound”.

 We only prove truths.

Double yay! Our logical system is “complete”.

 We can prove all the truths via inference rules.

For this logical system and propositional formulas

This logical system is

sound

and

complete

for propositional truths (tautologies)

“all theorems are true”

“all truths are theorems”

For small examples, eg. in your problems,

you can prove a formula is valid

by simplifying the formula by hand

 (similar to calculating arithmetic expressions)

Proving tautologies by hand

Prop. formulas S and T are equivalent, written S ≡ T,

 if V[S] = V[T] for all truth-assignments V.

⇒ their satisfiability/validity is the same

Logical Equivalence

Definition:

Example equivalences

¬(x∧y) ≡ (¬x∨¬y)

¬(A ∨ B) ≡ (¬A ∧ ¬B)

A→B ≡ (¬A∨B)

(A∨B) ≡ (B∨A)

((A∨B)∨C) ≡ (A∨(B∨C))

remark: so it’s okay to write (A∨B∨C)

A∨A ≡ A

¬¬A ≡ A

A↔B ≡ ((A→B)∧(B→A))

((A∧B)∨C) ≡ ((A∨C)∧(B∨C))

etc.

 (((x→y)∧x)→y)

≡ ¬((x→y)∧x)∨y

≡ (¬(x→y)∨¬x)∨y

≡ ¬(x→y)∨(¬x∨y)

≡ ¬(¬x∨y)∨(¬x∨y)

= ¬S∨S, where S = (¬x∨y).

And a formula of form ¬S∨S is clearly valid.

Problem: Show that (((x→y)∧x)→y) is valid.

Solution 1: Truth-table method

(using A→B ≡ ¬A∨B)

(using ¬(A∧B) ≡ ¬A∨¬B)

(using (A∨B)∨C ≡ A∨(B∨C))

(using A→B ≡ ¬A∨B)

Solution 2: Use equivalences:

10

First order logic

A model for pretty much all

mathematical reasoning

“Not, And, Or, Implies, If And Only If”

Plus: Quantifiers: For All (∀), There Exists (∃)

 Equals (=)

 “constants”, “relations”, “functions”

Variables like x now represent
objects, not truth-values.

“Ben is taller than everyone”:

∀x IsTaller(Ben,x)

relation name:
 stands for a mapping,
 object(s) ↦ T/F

constant name:
 stands for a
 particular object

variable:
 stands for an
 object (person)

“Ben is taller than everyone”:

∀x IsTaller(Ben,x)

“Ben is taller than everyone else”:

∀x (¬(x=a)→ IsTaller(Ben,x))

equality (of objects)

0th order logic, as usual

“Ben’s dad is taller than everyone else’s dad”:

∀x (¬(x=Ben)→ IsTaller(Father(Ben),Father(x)))

function name:
 stands for a mapping,
 object(s) ↦ object

“Ben is taller than everyone”:

∀x IsTaller(Ben,x)

“Ben is taller than everyone else”:

∀x (¬(x=Ben)→ IsTaller(Ben,x)

Vocabulary: A collection of constant-names,
 function-names,
 relation-names.

Vocabulary from the previous slide:

one constant-name: Ben

one function-name: Father(∙)

one relation-name: IsTaller(∙, ∙)

11

Vocabulary: A collection of constant-names,
 function-names,
 relation-names.

Another example of a vocabulary:

Example “sentences”:

one constant-name: a

two function-names: Next(∙), Combine(∙, ∙)

one relation-name: IsPrior(∙, ∙)

∃x (Next(x)=a)

∀x ∀y (IsPrior(x,Combine(a,y)) → (Next(x)=y))

(∀x IsPrior(x,Next(x))) → (Next(a)=Next(a))

Let’s talk about TRUTH.

Q: Is this sentence true?

A: The question does not make sense.

∃x (Next(x)=Combine(a,a))

Whether or not this sentence is true
depends on the interpretation of the vocabulary.

Interpretation:

Informally, says what objects are

and what the vocabulary means.

Q: Is this sentence true?

A: The question does not make sense.

∃x (Next(x)=Combine(a,a))

Whether or not this sentence is true
depends on the interpretation of the vocabulary.

Interpretation:

 Specifies a nonempty set (“universe”) of objects.

 Maps each constant-name to a specific object.

 Maps each relation-name to an actual relation.

 Maps each function-name to an actual function.

∃x (Next(x)=Combine(a,a))

Interpretation #1:

• Universe = all strings of 0’s and 1’s

• a = 1001

• Next(x) = x0

• Combine(x,y) = xy

• IsPrior(x,y) = True iff x is a prefix of y

For this interpretation,

the sentence is… …False

∃x (Next(x)=Combine(a,a))

Interpretation #2:

• Universe = integers

• a = 0

• Next(x) = x+1

• Combine(x,y) = x+y

• IsPrior(x,y) = True iff x < y

For this interpretation,

the sentence is… …True

12

∃x (Next(x)=Combine(a,a))

Interpretation #2:

• Universe = natural numbers

• a = 0

• Next(x) = x+1

• Combine(x,y) = x+y

• IsPrior(x,y) = True iff x < y

For this interpretation,

the sentence is… …False

Satisfiability / Validity

Interpretation I satisfies sentence S:

 I [S] = T

S is satisfiable:

 there exists I such that I [S] = T

S is unsatisfiable:

 I [S] = F for all I

S is valid:

 I [S] = T for all I

unsatisfiable

All sentences in a given vocabulary

satisfiable

valid

∃x ¬(Next(x)=Next(x))

∃x (Next(x)=Combine(a,a))

(∀x(x=a))→(Next(a)=a)

Valid: automatically true,

 for ‘purely logical’ reasons

Unsatisfiable: automatically false,

 for purely logical reasons

Satisfiable (but not valid):

 truth value depends

 on the interpretation

 of the vocabulary

Problem 1: Show this is satisfiable.

(∃y ∀x (x=Next(y))) → (∀w ∀z (w=z))

Now (∃y ∀x (x=Next(y))) means

“there’s an integer y such
that every integer = y+1”.

Let’s pick this interpretation:

Universe = integers, Next(y) = y+1.

That’s False!
So the whole sentence becomes True.

Hence the sentence is satisfiable.

Problem 2: Is it valid?

(∃y ∀x (x=Next(y))) → (∀w ∀z (w=z))

There is no “truth table method”.

You can’t enumerate all possible interpretations!

You have to use some cleverness.

13

Problem 2: Is it valid?

(∃y ∀x (x=Next(y))) → (∀w ∀z (w=z))

Solution: Yes, it is valid!

Proof: Let I be any interpretation.

If I [∃y ∀x (x=Next(y))] = F,

 then the sentence is True.

If I [∃y ∀x (x=Next(y))] = T,

 then every object equals Next(y).

In that case, I [∀w ∀z (w=z)] = T.

So no matter what, I [the sentence] = T.

Axiomatic System for Validity?

Can we find axioms & deduction rules so that
set of theorems = set of valid sentences ?

A ridiculous way:
Let axioms = “set of all valid sentences”.

That is dumb because we at least want an
algorithmic way to check if

a given expression is an axiom.

Axiomatic System for Validity?

Open any textbook on logic.
You’ll see an axiomatic system like this:

 deduction rule:

 axioms: 1. A∨¬A for any sentence A

2. any 0th-order tautology,

 with sentences for variables

3. ∀x ∀y ((x=a∧y=b)→(Func(x,y)=Func(a,b)))

4. IsR(a)→(∃x IsR(x))

5. blah blah blah, bunch more obviously valid

 kinds of sentences (algorithmically checkable)

from A and A→B can deduce B

Axiomatic System for Validity?

 deduction rule:

 axioms: 1. A∨¬A for any sentence A

2. any 0th-order tautology,

 with sentences for variables

3. ∀x ∀y ((x=a∧y=b)→(Func(x,y)=Func(a,b)))

4. IsR(a)→(∃x IsR(x))

5. blah blah blah, bunch more obviously valid

 kinds of sentences (algorithmically checkable)

from A and A→B can deduce B

Let’s call this the
“LOGIC TEXTBOOK” axiomatic system.

Axiomatic System for Validity?

Let’s call this the
“LOGIC TEXTBOOK” axiomatic system.

(Usually called a
“Hilbert axiomatic system”)

His PhD thesis: Yes!

Easy claim: any ‘theorem’ is valid sentence.

Question: is every valid sentence a ‘theorem’?

Kurt Gödel

“Gödel’s COMPLETENESS Theorem”

14

Consequence:

There is a computer algorithm which
finds a proof of any valid logical sentence.

The set of logically valid sentences
is interesting, but it’s not THAT interesting.

1. Think of some universe you want to reason about.

2. Invent an appropriate vocabulary

 (constants, functions, relations).

3. ADD in some axioms which are true under the interpretation

you have in mind.

4. See what you can deduce!

More typical use of first order logic:

Example 1: Euclidean geometry

∀x1 ∀x2 IsSameLength(x1,x2,x2,x1)

∀x ∀y ∀z IsSameLength(x,y,z,z)→(x=y)

∀x ∀y IsBetw een(x,y,x)→(y=x)

“Segment Extension”: ∀x1,x2,y1,y2

 ∃z IsBetw een(x1,x2,z)∧IsSameLength(x2,z,y1,y2)

… 7 more …

constant-names, function-names: none

relation-names: IsBetween(x,y,z)
IsSameLength(x1,x2,y1,y2)

extra axioms: Alfred Tarski

Cool fact: this deductive system
is complete for Euclidean geometry.

I.e., every true statement about
Euclidean geometry is provable in this system.
 “Decidability of the theory of real closed fields”

Euclid

Example 2: Arithmetic of ℕ

∀x ¬(Successor(x)=0)

∀x ∀y (Successor(x)=Successor(y))→(x=y)

∀x Plus(x,0)=x

∀x ∀y Plus(x,Successor(y))=Successor(Plus(x,y))

∀x Times(x,0)=0

∀x ∀y Times(x,Successor(y))=Plus(Times(x,y),x)

“Induction:” For any parameterized formula F(x),

 (F(0)∧(∀x F(x)→F(Successor(x)))) → ∀x F(x)

function-names: Successor(x)
Plus(x,y)
Times(x,y)

extra axioms:

constant-name: 0

Giuseppe Peano

Peano arithmetic is sound
(i.e., every ‘theorem’ is a valid statement
 about arithmetic of natural numbers)

Is it complete for truths about natural numbers?

15

We’ll be back… Example 3: Set theory

∀x ∀y ((∀z z∈x ↔ z∈y) → x = y)

∀x ∀y ∃z (x∈z ∧ y∈z)

… 7 more axiom/axiom families …

constant-names, function-names: none

relation-name: IsElementOf(x,y)
[“x∈y”]

extra axioms, catchily known as “ZFC”:

Empirical observation:
 Almost all true statements about MATH
 can be formalized & deduced in this system.

Including every single fact we will prove

in 15-251 (though we will work at a

“higher level” of abstraction)

Axiomatic systems:

 definitions of axiom,
 deduction rules,
 theorems

 soundness & completeness

0th-order logic:
 propositional formulas

 truth assignments

 valid/satisf iable

 truth-table method

 equivalences

1st-order logic:

 understand examples

 interpretations

 valid/satisfiable

Study Guide

