15-251: Great Theoretical Ideasin Computer Science
Fall 2014, Lecture 3 Venkat Guruswami

Axiomatic Systems & Logic

PP—>Q

In mathematics, sometimes your intuition

can be quite wrong. m g

Here’s a theorem (called \ { m

Banach -Tarskiparadox):

A solid ball in 3-dimensions can be cut up into

six non-overlapping pieces,

so that these pieces can be moved around & assembled
into two identical copies of the original ball.
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Thisweek, we will talk a bit about
formallogical reasoning and proofs.

TODAY

Part1l: Aomatic systems.
Part2: Propositional logic.

Part3: Firstorderlogic. (justsome basics)

Administrative stuff

I (Venkat) will be giving the next 6 lectures
(3weeks): Logic, Proofs, Counting, Games.

My office hours:
Thursdays, 1:15-2:45pm (before class)

The classiis full, so not accepting people from waitlist
(this could change after HW 1 is due)

People high on waitlist can submit HW1 via email to

correspondent TA asinstructed by Prof. Adamchik.
You’re also welcome to sign up for Piazza.

Soitis importantto:

Formalize concepts, give precisedefinitions
Make implicitassumptions explicit

Write careful proofs, where every step can
be checked carefully.

Even “mechanically”

E using a “computing machine”, if you will
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Axiomatic Systems




An ATM has $2 bills and $5 bills
What dollar amounts can it dispense?

2 9=4+5
) 11=6+45
7=2+5 13=8+5
4=2+42 15=10+5
10=5+5

...anyodd amountatleast5
6=4+2

8=6+2
10=8+2
12=10+2

Cannot make 1 or 3

...alleven amounts ~Allmin N exceptO, 1, 3.

Different axioms = Different theorems

axioms ={0,2}:

= theorems =all even natural #'s

axioms ={10,30}:

= theorems =all positive multiples of 10

axioms ={2,3}:

= theorems =all natural #'s except0,1

Example: Show that (()(())) is a theorem.

Deduction:

0 axiom
(0)) WRAP line 1
() CONCAT lines 1,2

(OWON WRAP line 3

Each line (theorem) either an axiom, oris formed
by applying deductionrule to previous theorems.

This is an example of an axiomatic system.
Initial amounts (2 & 5): “axioms”

“If you can make xandy,

you can make x+y.” deductionrule

The quantities you can make: “theorems”

In this axiomatic system: xis a“theorem”
=
x#0,1,3

Another axiomatic system

“Vocabulary”: all strings using symbols (,)

axiom: 0

deductionrules: WRAP: fromS,  deduce (S)
CONCAT: fromS, T, deduce ST

theorems: O (0) P ((0)) A (((0))) e
00, 000, 00, .-

Example: Show that ())) is NOT a theorem.

Claim: anytheorem has equallymany(and)

Proof sketch:
True forthe axiom.
WRAP: If S has equallymany, so does (S)
CONCAT: If S, T have equal,sodoes ST

Formal proof:

structural induction
(orstrong induction on # of steps in deduction)




Exercise: Write aformal proofusing structuralinduction,

Forcomparison, here is a proofbyinduction...

For k = 1, let Fk be the statement “any theorem derived in exactly k lines has equally many (,)".

The base case is k = 1. F1 istrue because a 1-line deduction must be an axiom, and the only axiom, (), has
equally many (,).

For general k > 1, let us suppose that Fi is true for all 1 <i<k. For the induction step, we must show that F
is true.

So suppose W is a theorem derived at the end of a k-line deduction.

The final line of this deduction (which derives W) is either an axiom, an application of WRAP to some previous
line j < k, or an application of CONCAT to some two previous lines, j1, j2 < k. We verify that W has equally
many (,) in all three cases.

In case the k™ line is an axiom, W must be (), which has equally many (,)

In case the k™ line is WRAP applied to line j < k, we have W = (S), where S is the theorem on line j. Since R
is true by assumption, S has the same number of (,) —say c each. Then W has c+1 many (and c+1 mary ),
an equal number.

In case the k™ line is CONCAT applied to lines ji, j2 < k, we have W = TiT2 where T1 isthe theorem on line ju
and Tz is the theorem on line j2. Since Fj, is true by assumption, T1 has the same number of (,)— say di
each. Similarly T2 has the same number of (,) — say dz each. Hence W has di+d2 many (and di+d2 many ),
an equal number.

In each of the three cases we have shown W has an equal number of (,). Thus Fkis indeed true. The
induction is complete.

Question: Is ())(() a theorem?

Answer: No.

Claim: a string of (,) is atheorem in this system
if and only if
it's asequence of “balanced parentheses”.

Proof: Exercise (oraskone ofthe course staff)

Thatis, this axiomatic system is sound & complete
for the truth concept: “The parens are balanced”

Logic

Logic: aformal game played with symbols
which turns outto be useful for
modeling mathematical reasoning.

Math: a formal game played with symbols
which turns outto be useful for
modeling the world.

Soundness and Completeness

Truth concept [asubsetofstringsover(,)]:
“There are equal numbers of ( and ) in the string”

This axiomatic systemis “sound” forabove
truth concept.
* Alltheorems are “true”

Is it “complete” for above truth concept?
- i.e., are all “true” strings also theorems?

Axiomatic systems: summary
\Vocabulary (oruniverse) (numbers, strings, tiles, graphs, .
Elements called expressions.

Axioms: initial setofexpressions.

Deduction rules: rules for obtaining new
expressionsfrom old ones.

Theorem: an obtainable expression.

Typical problems: Is Xa theorem?
Show Y is nota theorem.
Is itsound/complete for some “truth” concept?
“Characterize” the setofall theorems.

ot order logic

AKA propositional logic




Amodel for a simple subset
of mathematical reasoning

“Not, And, Or, Implies, If And Only If’

An English Propositional variable:
statementthatcan asymbol (letter)
be true orfalse representingit

“Potassium is observed.”
“Hydrogenis observed.”
“Pixel 29 is black.”
“It's raining.”

Formally,formulas are strings made up of:

(punctuation)
(punctuation)
(not)

(and)

(o)
(implies)
(ifand onlyif)
(variable symbols)

Propositional formulae

Formally, propositional formulae are defined
by anaxiomatic system!

axioms: X1, Xo, Xa, ...

deductionrules: from A, canobtain -A
from A,B can obtain (AAB)
(AvB)
(A—B)
(A-B)

Definition: A formulais a propositional formula
(aka “well-formed” formula (WFF))
ifand onlyif itis a‘theorem’in this system.

Compoundsentence Propositional formula

Potassium isnot observed. -k

Atleast one of hydrogen and
potassium is observed.

If potassium isobserved
then hydrogenisalso
observed.

If I'm not in 251 lecture then
I'm preparing the lecture, and
if I'm not preparing the lecture
then I’'m thinking about HW problems

((5l=p)A(=p—w))

Propositional formula

= Astring which is syntactically “legitimate”.

Propositional formula nota prop.formula

X1 XA
(A (X—%))VXa) )Xo——>

~((Xe0=>Xn) A(Xo—>X5)) (XA (= %0)) %)

The “meaning” of these connectives

(ArB) “AandB” (AvB) “AorB”

trueif both A and B trueif at leastone of
are true A and Bis true

—-A “notA”

trueif Ais false




The “meaning” of these connectives

(A—>B) “if AthenB”
“Aimplies B”

what are the rules for this?

Equivalent to (-A Vv B)

(A<B)  “Aif and only if B”

sameas (A—>B)and (B—>A)

“If potassiumis observed then
carbon and hydrogen are also observed.”

=)

Q: Is this statementtrue?

A: Depends. The questionis ill specified.

Truth assignment ¢ :
assigns T or F to each variable

Extends to give a truth value g [S]forany formula S
by (recursively) applying these rules:

Let’s talk about TRUTH.

“If potassiumis observed then
carbon and hydrogen are also observed.”

(k—(cAh))

Whether this statement/formulais true/false
depends on whether the variables are true/false
(“state ofthe world”).

lfk=T,c=T,h=F... ;
...theformulais False.

Ifk=F,c=F h=T... :
...theformulais True.

Recursive Evaluation for S
eval(formula S, input¢from {T,F}")

If(S==“T") return T;
if (S == “F”) return F;
if (S==“S4ASy")
return eval(S4,c) A eval(S,,c);




Truth assignment example Satisfiability

S = (—(%AXg)) ¢ satisfiesS:
[S]=
Sis satisfiable:
there exists ¢ such thatg [S]=

Sis unsatisfiable:
S Er E?gAF)) ¢[S]=F forall¢
Slol=(1—

Sis valid (AKA atautology):
G[SI=F

G[S]=T forallg

All well-formed formulas

Valid: automatically true,
for ‘purely logical’ reasons

unsatisfiable satisfiable

(kA-K) (k—(cAh))

Unsatisfiable: automatically false,
for purely logical reasons

Satisfiable (but notvalid):

“Potassium isobserved and potassium isnot observed.” truth value depends

‘If potassium isobserved then on the state of the world
carbon and hydrogen are observed.”

“If hydrogen isobserved then hydrogen isobserved.”

Example:S=(pA(p > q)) —>q Example:S=(pA(p > 4q)) —>q

Truth table Truth table

| o | o | epoa | ereoe | ereowoa |
—_

Formula Sis valid!




S = (x=(y—2))=((xAy)—2))

Truth table

44 44T TT
4 47T A 47T
4 M 4T 4T A4

Sis satisfiable!

Deciding Satisfiability (or Validity)

Truth table method:
Pro: Always works

Con: If S has nvariables, takes = 2"time

Conjecture: (stronger than P = NP)

There is no O(1.999n) time algorithm
thatworks for every formula.

Butfor a given formula, sometimes you can
prove/disprove satisfiabilitycleverly.

Truth table method for proving tautologies

SOME CONS

Does notgive much “intuition”

Evensimple things have very long proofs
((P1—> P2) A(P2—> P3) A ... A (Pr-1 = Pn)) = (P1— Pn)

Does notscale to non-Boolean proofs.

If we want to prove things about
all the naturals, then we’re in trouble with brute-force.

S = (x=(y—2))=((xAy)—2))

Truth table

44 4 4mmT T
44T Tm A4 4T
4 M A4 T A4 T AT
o4 =4 4 44 4+ -

Sis valid!

Quick recap

propositional formulas

n-variable formula maps each
possible “world” in{T,F}" into either T or F

Some formulas are “truths” (tautologies):
they are true in all possible 2" worlds

Cancheck if a formulais a tautology in ~ 2" time
by truth table method.

A“more natural” way to prove things...

Letus start with asimple tautology

(-AV A) we’ll call this an “axiom”
And use one of theserules at each step:
Av(BVC) AVA A
(AvB)vC A contraction BvA
associativity
(AVB),(-AVC)

(BVC) we’ll call these
“inference rules”

expansion

cut rule

Whatever we can prove, we’ll call “theorems”




Proof of commutativity rule g i
(hypothesis) (1)
(axiom) 2

(cutrule to 1,2)

Proof of “modus ponens” A:'T;—B

Since the logical system does not have “—”
we define ittobe ~A VB

(hypothesis) )

(hypothesis)

(def. of =) (2
(apply expansion to 1)3)

(cutrule to 2,3)

(contraction)

Recap: A logical System

for Propositions
Axiom:
(-AVA)

Inference Rules:

Av(BVvC) AVA
(AvB)vC A contraction BV A
associativity
(AvB),(-AVvC)
cut rule (B v C)

expansion

A
AVvB

Proof of new expansionrule
(hypothesis)
(expansionrule)

(commutativity)

Whatis a proof?

A sequence of statements,
each of which

is an axiom,
or a hypothesis,

or follows from previous statements
using aninference rule

(well-formed) propositional formulas

some formulas are some formulas are
tautologies (“truths”) “theorems”

pvV-p pvV-p
(PA(P—a))—>q (pA(p—>a))—q
can check by these are formulas

truth-table for whichwe
cangive proofs




For this logical system and propositional formulas
Are alltheorems “true” (i.e., tautologies)?

Yes. (easy proof by induction)

Yay! Our logical system is “sound”.
We only prove truths.

Are all tautologies theorems?

Yes. (proof lot more involved)

Double yay! Our logical system is “complete”.
We can prove all the truths via inference rules.

Proving tautologies by hand

Forsmallexamples, eg.in your problems,
you can prove aformulais valid
by simplifying the formula by hand

(similar to calculating arithmetic expressions)

Example equivalences

=(xAy) = (xv-y)
=(Av B) = ("AA-B)
A—B= (-AVB)

(AvB) = (BVA)
((AvB)vC) = (Av(BVC))
remark:soit's okayto write (AvBVC)
AVA=A
A=A
A-B = (A—B)A(B—A))
((AAB)VC) = ((AvC)A(BVC))
etc.

This logical system is
sound “all theorems are true”

and

complete “all truths are theorems”

for propositional truths (tautologies)

Logical Equivalence

Definition:
Prop.formulas Sand T are equivalent, written S = T,

if g[S] = ¢[T] for all truth-assignments g.

= their satisfiability/validityis the same

Problem: Show that (((x—Yy)AX)—y) is valid.
Solution 1: Truth-table method

Solution 2: Use equivalences:

(x—>¥)AX)—y)
= —((x=Y)AX) VY (using  A-B =-AVB )
= (~(x=y)v-X)vy
= = (x—oy)V(=xvy)
= =(=xvy)V(-xvy)
==SVS, where S = (=xvy).

(using -(AAB)=-Av-B )
(using (AVB)vVC = Av(BVC) )
(using A—B = -AvB )

And a formula of form =SvSiis clearlyvalid.




First order logic

“Benis tallerthan everyone”:

VXIsTaIIer(Ben,x)\
variable:

stands foran
object(person)

constantname:
stands fora
particular object

relation name:

stands fora mapping,
object(s) » T/F

“Benis tallerthan everyone™:
vxIsTaller(Ben,x)

“Benis tallerthan everyone else”:
vx(-(x=Ben)— IsTaller(Ben,x)

“Ben’s dad is tallerthan everyone else’s dad”:

VX (=(x=Ben)— IsTaller(Father(Ben),Father(x)))

function name:
stands fora mapping,
object(s) ~ object

Amodel for pretty much all
mathematical reasoning

“Not, And, Or, Implies, If And Only If’

Plus: Quantifiers: For All (v), There Exists (3)
Equals (=)

» oo« n oo«

“constants”, “relations”, “functions”

Variables like xnow represent
objects, nottruth-values.

“Benis tallerthan everyone”:
vxIsTaller(Ben,x)

“Benis tallerthan everyone else”:
VX (=(x=a)— IsTaller(Ben,x))

Othorder logic, as usual

equality (ofobjects)

Vocabulary: Acollection of constant-names,
function-names,
relation-names.

\Vocabularyfrom the previous slide:

one constant-name: Ben
one function-name: Father(*)
onerelation-name: IsTaller(-,*)




\Vocabulary: Acollection of constant-names,
function-names,
relation-names.
Another example ofa vocabulary:

one constant-name: a
two function-names: Next(-), Combine(-,-)
onerelation-name:  IsPrior(:, )

Example “sentences”:
ax (Next(x)=a)
VxVy (IsPrior(x,Combine(a,y)) — (Next(x)=y))
(vxlIsPrior(x,Next(x))) — (Next(a)=Next(a))

3x (Next(x)=Combine(a,a))

Q: Is this sentence true?
A: The question does not make sense.

Whether or notthis sentence istrue
dependson the interpretationofthe vocabulary.

Interpretation:
Informally, says whatobjects are
and whatthe vocabularymeans.

3x (Next(x)=Combine(a,a))

Interpretation #1:
Universe =all stringsof0’s and 1’s
a=1001
Next(x) = x0
Combine(xy) =xy

IsPrior(xy) = True iff xis a prefixofy

For this interpretation,
the sentence is... ...False

Let’s talk about TRUTH.

3Ax (Next(x)=Combine(a,a))

Q: Is this sentence true?
A: The question does notmake sense.

Whether or notthis sentence istrue
dependsonthe interpretation of the vocabulary.

Interpretation:

Specifies anonemptyset (“‘universe”) of objects.
Maps each constant-name to a specific object.
Maps each relation-nameto an actual relation.
Maps each function-name to an actual function.

3x (Next(x)=Combine(a,a))

Interpretation #2:
Universe =integers
a=0
Next(x) = x+1
Combine(xy) =x+y
IsPrior(xy) = True iff x<y

For this interpretation,
the sentence is...
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3Ax (Next(x)=Combine(a,a))

Interpretation #2:

Universe =natural numbers
a=0

Next(x) = x+1

Combine(xy) = x+y
IsPrior(xy) = True iff x<y

For this interpretation,
the sentence is... ...False

All sentences in a given vocabulary

unsatisfiable

Ax =(Next(x)=Next(x))

satisfiable 3x (Next(x)=Combine(a,a))

valid
(VX(x=a))—(Next(a)=a)

(3y vx (x=Next(y))) — (Yw Vz (w=2))
Problem 1: Show this is satisfiable.
Let's pick this interpretation:
Universe =integers, Next(y) = y+1.

Now (FyVvx (x=Next(y))) means

“there’s anintegerysuch
thatevery integer =y+1".

That's False!
So the whole sentence becomes True.
Hence the sentence is satisfiable.

Satisfiability / Validity
Interpretation I satisfies sentence S:
I[S]=T
Sis satisfiable:
there exists IsuchthatI[S]=T

Sis unsatisfiable:
I[S]=FforallI

Sis valid:
I[S]=T for allI

Valid: automatically true,

for ‘purely logical’ reasons

Unsatisfiable: automatically false,
for purely logical reasons

Satisfiable (but notvalid):

truth value depends
on the interpretation
of the vocabulary

(3y vx (x=Next(y))) — (Yw Vz (w=2))

Problem 2: Is itvalid?

Thereis no “truth table method”.
You can’tenumerate all possible interpretations!

You have to use somecleverness.

12



(3y vx (x=Next(y))) — (Vw Vz (w=z))

Problem 2: Is it valid?
Solution:  Yes,itis valid!

Proof: | etIbe anyinterpretation.
IFI[Ay VX (x=Next(y))] = F,
thenthe sentence is True.
IfI[Fy VX (x=Next(y))] =T,
then every objectequals Next(y).
Inthat case,I[vw VYz(w=2)] =T.
So no matter what, I[the sentence]=T.

Axiomatic System for Validity?

Open anytextbook on logic.
You’ll see an axiomatic system like this:

axioms: 1. Av-A foranysentence A
2. any Oth-ordertautology,
with sentencesforvariables
3. ¥x Wy ((x=aAy=b)—(Func(x,y)=Func(a,b)))
4. 1sR(@)—(3x IsR(x))
5. blah blah blah, bunchmore obviously valid
kinds of sentences (algorithmically checkable)

deduction rule: from Aand A—B can deduce B

Axiomatic System for Validity?

Let's call this the
“LOGIC TEXTBOOK” axiomatic system.

(Usuallycalled a
“Hilbertaxiomatic system”)

Axiomatic System for Validity?

Canwe find axioms & deduction rules sothat
setoftheorems =setofvalid sentences ?

Aridiculous way:
Letaxioms ="“setofall valid sentences”.

Thatis dumb because we atleastwantan
algorithmic wayto checkiif
agiven expressionisanaxiom.

Axiomatic System for Validity?

Let's call this the
“LOGIC TEXTBOOK” axiomatic system.

axioms: 1. Av-A foranysentence A
2. anyOth-ordertautology,
with sentencesforvariables
3. ¥x Wy ((x=aAy=b)—(Func(x,y)=Func(a,b)))
4. 1sR(@)—3x IsR(x))
5. blah blah blah, bunch more obviously valid
kinds of sentences (algorithmically checkable)

deductionrule: from Aand A—B can deduce B

Easy claim: any‘theorem’isvalid sentence.

Question: is every valid sentence a ‘theorem’?

KurtGodel

His PhD thesis: Yes!
“Godel’s COMPLETENESS Theorem”

13



Consequence:

There is a computer algorithm which
finds a proof of any valid logical sentence.

Example 1. Euclidean geometry

constant-names, function-names: none

relation-names: IsBetween(x,y,2)

IsSamelLength(xy,%,Y1,Y2)

extra axioms:

VX, VX, IsSamelLength(xy,X5,X5,X1)

VX Vy Vz IsSamelLength(x,y,z,z)—(x=y)

VX Vy IsBetw een(x,y,x)—(y=x)

“Segment Extension”: VX4,X5,Y1,Y>

3z IsBetw een(Xy,X,,z) AlsSameLength(x,,2,y1,Y2)
... 7 more ...

Example 2: Arithmetic of N

constant-name: 0]

function-names: Successor(X)
Plus(xy)
) Times(xy)

extraaxioms:

Vx =(Successor(x)=0)

VX Yy (Successor(x)=Successor(y))—(x=y)

Vx Plus(x,0)=x

vx vy Plus(x,Successor(y))=Successor(Plus(x,y))

vx Times(x,0)=0

Vx Yy Times(x,Successor(y))=Plus(Times(x,y),x)

“Induction:” Forany parameterized formula F(x),

(F(O)A(VXx F(x)—F(Successor(x)))) — Vx F(x)

The setoflogicallyvalid sentences
is interesting, butit's not THAT interesting.

More typical use offirstorder logic:

1. Thinkofsome universe you wantto reason about.

Invent an appropriate vocabulary

(constants, functions, relations).

. ADDin some axiomswhich are true underthe interpretatio

you have in mind.

. See whatyou can deduce!

Euclid Alfred Tarski

Coolfact: this deductive system
is complete for Euclidean geometry.

l.e., every true statementabout
Euclidean geometryis provable in this system.
“Decidabilityofthe theory ofreal closed fields”

GiuseppePeano

Peano arithmeticis sound
(i.e., every ‘theorem’ is a valid statement
about arithmetic of natural numbers)

Is itcomplete for truths about natural numbers ?

14



Example 3: Set theory

We’'ll be back...
' constant-names, function-names: none
relation-name: IsElementOf(x,y)

[xey’]
extra axioms, catchilyknown as “ZFC”:

VXYY ((VZ zEX < z€Y) — X=Y)
VXVy 3z (X€Z A yEZ)
... 7 more axiom/axiom families ...

Axiomatic systems:

Empirical observation: definitions of axiom,
deduction rules,

Almostall true statements about MATH theorems
can be formalized & deduced in this system. soundness & completeness

Ot-order logic:
propositional formulas

Including every single fact we will prove truth assignments
in 15-251 (though we will work at a m valid/satisfiable

“higher level” of abstraction) . truth-table method
equivalences

Study Guide
1st-order logic:
understand examples
interpretations
valid/satisfiable




