
/*

 *
 * Notes:
 * This is only a first draft, and I'm putting it out there
 * so that you have something to go on. I'll likely add
 * more in the future, or take stuff away, so just remember
 * while you code to keep the style goals in mind more than
 * the details. Fundamentally, your style should portray
 * how much you care about the code, and how much time
 * you spent making it elegant and beautiful.
 *
 * Also, some of the instructions in this are specific
 * to this class, and would not necessarily constitute
 * good style outside of it. For this class we are looking
 * for your stylistic effort, and understanding of the code
 * as well as actual style. Your code should also be
 * written with the goal of being printed out and read in
 * mind, as well as being graded- something that might not
 * be important for your future coding.
 *
 * Furthermore, this is simply a guide to help you write
 * beautiful, elegant, maintainable, and readable code.
 * If you do decide to sway from instruction, please
 * supply a good reason in comments.
 *
 * While I will not take points off for not conforming to it
 * necessarily the official java style guide is at:
 * http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
 * You should conform to this outline.
 *

 * Style Goals:
 * Make your code easy to read / understand.
 * Make your code easy to write.
 * Make your code easy to print.
 * Make your code easy to view.
 * Convey how much you love your code - You love it.
 * Make your code look exactly how you designed it to look
 * from any reasonable editor
 * (emacs, vim, eclipse, Dr. Java, notepad...)
 * Make your code fast.
 * Make your code easy to debug.
 * Remove redundancies.
 * Protect code from bad programming.
 * Conform to agreed standards.
 * Make it easy for other people to write using your code.
 * Make it easy for other people to extend your code.
 * Convince others your code is good.
 * Be consistent. (Consistency reduces confusion and error)

 *
 * Do not use whitespace (more than one new line)
 * to keep code clean.
 *
 * Use organized, formated comments.
 *
 * Use comments to organize code.
 *
 * It is more important that you keep the width
 * of comments and lines of code short,
 * then have line breaks be logical.
 * (about the width of the longest line here)
 *
 * I will not take points off for spelling.
 * In general though, people might get annoyed
 * if your spelling is bad.
 *
 **
 *
 * when writing comments:
 * use /**
 * *
 * *
 * for javadoc comments that can be read outside the source,
 * such as what something does and how to use it.
 * You don't need to use javadoc annotations or HTML-
 * just good formating principles
 *
 **
 *
 * use /*
 * *
 * *
 * for developer comments that can only be read within the source:
 * algorithm descriptions
 * data descriptions
 * notes and clarifications
 * discussion about how to write more code
 * things that need work (TODO)
 *
 **
 *
 * use //
 * for single line note comments.
 * It is usually not permissible to include this
 * type of comment on the same line as code
 * Except when you have a very short line of type declaration.
 * Ex:
 * int x=5; //x is not an index, but 5 is a pretty number.
 *
 */

/*
 * If you import more than 3 or 4 classes from the
 * same class I recommend you use .*
 */
import java.util.*;

/**
 * A general description of:
 * What the class is,
 * What it should/can be used for,
 * How it should be used.
 *
 * A more detailed description of:
 * How it should be used,
 * How the algorithms work.
 *
 * Notes:
 * Precautions,
 * depreciations,
 * things that need work (TODO)
 *
 * @author Matthew B. Mirman (mmirman@andrew.cmu.edu)
 * @version 1
 * @date (last edited date)
 */
public class Style {

/*
 * On curly brackets:
 * It does not matter if you put
 * your curly brackets on a new line
 * ex:
 * if (i<3)
 * {
 * ..do something..
 * }
 * else
 * {
 * ..do something else..
 * }
 *
 * or if you put your curly brackets
 * on the same line
 * ex:
 * if (i<3) {
 * ..do something..
 * }else{
 * ..do something else..
 * }
 * as long as you are consistent.
 *
 * The only things that should ever come after
 * a curly bracket on the same line are "else ... "
 * or "catch ... ". Not comments or other type
 * of code though. If you think of something else
 * that I am forgetting, tell me.
 *
 * If you decide not to use curly brackets for a
 * block, I recommend you put the code in a block
 * on a new line after an indentation.
 * ex:
 * if (i<3)
 * i++;
 *

 *
 * Indentations:
 * It does not matter whether you use 4 space or tab,
 * as long as you are very very consistent.
 * Both have advantages and disadvantages.
 *
 * 4 space:
 * advantages:
 * -super consistent. It looks the
 * same on every text editor.
 * -Easier to format code how you want.
 * You can also use 1,2,3,4,5... spaces if
 * you so wish.
 * disadvantages:
 * -can take longer to write.
 * -fewer editors have support
 * for auto-formating using 4 spaces.
 * Tabs:
 * advantages:
 * -very quick to type.
 * -more auto-formatters
 * have support for them
 * -can have size altered depending on editor.
 * disadvantages:
 * -They look different depending on editor.
 * -They encourage formating laziness.
 * -can not be mixed with 4-space.
 *
 */

/* Data *
 ****************************/

// Try to make data private and use getters and setters
private double x;

/* Getters and Setters *
 * Place just below data *
 ****************************/

/**
 * @return double x
 */
public double getX() {

return x;
}

/**
 * @param x
 */
public void setX(final double x) {

this.x = x;
}

/* Equals, HashCode, toString *
 * Try to always implement these *
 * Note: These have been *
 * autogenerated by eclipse *
 **********************************/

/*
 * Overridden methods do not necessarily need
 * javadoc comments.
 * (non-Javadoc)
 * @see java.lang.Object#equals(java.lang.Object)
 */
@Override
public String toString() {

return "Style [x=" + x + "]";
}

@Override
public int hashCode() {

final int prime = 31;
final long temp = Double.doubleToLongBits(x);
return prime + (int) (temp ^ (temp >>> 32));

}

@Override
public boolean equals(final Object obj) {

if (this == obj) {
return true;

}
if (obj == null) {

return false;
}
if (!(obj instanceof Style)) {

return false;
}
final Style other = (Style) obj;
return this.x==other.x;

}

/* Constructors *
 ***************************************/

/*
 * If you have more than one constructor that
 * does mostly the same thing but with different
 * combinations of arguments, it might be helpful
 * to create an initialization method,
 * with all possible arguments, and simply call that
 * from each different constructor. The initializer
 * should be placed at the beginning or end of
 * the constructors.
 *
 */

/**
 * Always include the empty constructor.
 * If you want there to be no empty constructor
 * make one that is private.
 */
public Style() {

setX(0);
}

/**
 * This constructor simply sets the only data
 * member, x, to what we expect it to be set as.
 * @param x
 */
public Style(final double x){

setX(x);
}

/**
 * This is a copy constructor. for data based
 * classes it is very nice to have.
 *
 */
public Style(final Style other){

/*
 * Note that I do not use setX or getX here
 * because I want this Style to be an exact
 * copy of other Style, not whatever getX
 * and setX might change x to.
 * Be careful when setting references to objects
 * if those objects have copy constructors,
 * use them. Think about memory, and write
 * comments explaining how memory is handled.
 */
this.x=other.x;

}

/* Methods *
 ******************************/

/*
 * Methods should be organized by what they do.
 */

/**
 * Here we return a new style object so that you can
 * call add within lines of equations, use that value
 * but not effect any of the original values.
 * ex: suppose we had a Vec3D class with add, cross
 * scale, and dot that all behaved this way.
 * we could then write
 * Vec3D angle=a.add(b).cross(c).scale(b.dot(c));
 * which translates easily into math, as opposed to
 * Vec3D composite=new Vec3D(a);
 * composite.add(b);
 * composite.cross(c);
 * composite.scale(Vec3D.dot(b,c));
 * @param b
 * @return the sum of this's "x" value and b's "x" value.
 * @throws NullPointerException if b is null
 */
public Style add(final Style b){

/*
 * Note that here we throw a null pointer exception
 * within the method, but we don't have
 * "throws NullPointerException" in the method name.
 * While if a programmer is stupid and puts a null into this method
 * it shouldn't continue blindly computing stuff
 * (more of an issue with more code), we don't want the programmer
 * to have to surround this method with a try/catch every time he
 * wants to call it. We do declare that it is possible for
 * this method to throw a nullPointerException in the method description
 * though, because it makes using it a bit easier.
 */
if (b==null)

throw new NullPointerException();
//create a new style object with the sum of this.getX() and b.getX()
return new Style(this.getX() +b.getX());
/*
 * Here, we used getX() because what if some time in the future
 * the programmer should decide either to extend style such that
 * x is really a function of x, or change that here.
 * It is much easier to do if you only ever use getX and setX.
 * There are cases where this isn't necessary
 */

}

/**
 * This method is just an example of using holder variables
 * so that repeated operations only need to happen once.
 * Not doing this can vastly increase the time complexity.
 * You should try to reduce the number of divides,
 * Math.sqrt and Math.pow as much as possible, because these
 * are really slow. But optimize smart. If removing a sqrt
 * means you have to put in 15 other lines of code,
 * it is probably not more efficient, and much uglier.
 * Readability usually takes precedence over efficiency,
 * but something like
 * for(int i=0;i<Math.sqrt(n-i);i++)
 * could easily be changed to
 * for(int i=0;i*i+i<n;i++)
 * without effecting readability.
 *
 * @param c is the square route of the number
 * of times x should be squared.
 */
public void power(final int c){

int c_squared=c*c;
for (int i=0;i<c_squared;i++){

//getX could be very slow, we use a holder variable.
final double x_hold = this.getX();
setX(x_hold*x_hold);

}
}

/**
 * If you ever use the same math/code twice or more,
 * and that code is more than 3- 5 operations or calls
 * long or is unexplained,
 * don't hesitate to write a helper method.
 *
 * You should do this to
 * -Eliminate code redundancy (even preemptively)
 * -Reduce amount of code that needs to be changed
 * in the case of a bug
 * -Make code easier to read by giving sequences of
 * operations descriptive names
 *
 * In general, these make the most sense
 * as private or protected.
 *
 * @param i is the row number
 * @param j is the column number
 * @return the index into
 * @throws ArrayIndexOutOfBoundsException
 * if i or j are smaller than zero
 */
private int getIndexHelper(final int i, final int j){

if (i<0 || j<0)
throw new ArrayIndexOutOfBoundsException();

return (int)Math.floor(i*x+j);
}

}

/*
 * Using final:
 * if a variable isn't changed within a method,
 * don't hesitate to use final, but try to anticipate
 * it not being changed. Do hesitate to make class
 * data final, methods final, and classes final.
 * Making things final helps keep you from accidentally
 * changing a variable, then trying to access it's original
 * value after it has been changed.
 *
 *
 * If you don't know what final is, don't worry about it,
 * and don't use it.
 */

