/*

hhkhkhkh kA hhkkhkhhkhkhkhhkhkhrhkhkhkhhkhkrhkhkhhhkhkhrhkhkhhhkhkrhkhkhkhhkhkrhkkhkhhkhkhkhkhkdhkkxk

* Notes:

This is only a first draft, and I'm putting it out there
so that you have something to go on. I'll likely add
more in the future, or take stuff away, so just remember
while you code to keep the style goals in mind more than
the details. Fundamentally, your style should portray
how much you care about the code, and how much time

you spent making it elegant and beautiful.

Also, some of the instructions in this are specific

to this class, and would not necessarily constitute

good style outside of it. For this class we are looking
for your stylistic effort, and understanding of the code
as well as actual style. Your code should also be
written with the goal of being printed out and read in
mind, as well as being graded- something that might not
be important for your future coding.

Furthermore, this is simply a guide to help you write
beautiful, elegant, maintainable, and readable code.
If you do decide to sway from instruction, please
supply a good reason in comments.

While I will not take points off for not conforming to it
necessarily the official java style guide is at:
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
You should conform to this outline.

R R I b b S b S b S SR e S b Sb b b S b b S b S SE b S b S b b S SR e S b b S b S b S Sb db I Sb b b Sb b S Sb dh S

Style Goals:

Make your code easy to read / understand.

Make your code easy to write.

Make your code easy to print.

Make your code easy to view.

Convey how much you love your code - You love it.

Make your code look exactly how you designed it to look
from any reasonable editor
(emacs, vim, eclipse, Dr. Java, notepad...)

Make your code fast.

Make your code easy to debug.

Remove redundancies.

Protect code from bad programming.

Conform to agreed standards.

Make it easy for other people to write using your code.

Make it easy for other people to extend your code.

Convince others your code is good.

Be consistent. (Consistency reduces confusion and error)
khkk Ak hkhkhkhkhkhkhAkhkhkhkhAhhhAhrhhkhAhhdAhrhhhAhhdhrhkhkhAhhdhrhkhhAhhkhAkrhkkhhhkhkkhkrhkkhhhkhkxx*k

Do not use whitespace (more than one new line)
to keep code clean.

Use organized, formated comments.
Use comments to organize code.

It is more important that you keep the width
of comments and lines of code short,

then have line breaks be logical.

(about the width of the longest line here)

I will not take points off for spelling.
In general though, people might get annoyed
if your spelling is bad.

R SR R I b b S b S b e S b e S b S b b Sb b b S b b 2b b S S b S Sb S b S S S b S b b S dh A Sb b b Sb b S db b S 4b b 3

when writing comments:

use /**
*

*

for javadoc comments that can be read outside the source,
such as what something does and how to use it.

You don't need to use javadoc annotations or HTML-

just good formating principles

R R R I b b S b S S e S b e S b b S b b S b I S b b Sb b S S b S Sb S b S S S b S S b S Sh b 2 b b Sb b b Sb b S 4b b3

use /*
*

*

for developer comments that can only be read within the source:
algorithm descriptions
data descriptions
notes and clarifications
discussion about how to write more code
things that need work (TODO)

R R e S I e S i I S dh I S b I dh b S S R S S R S S R S b R S dh e S S R S b e dh b A SR b S S S S R S S R S A S b b 4

use //
for single line note comments.
It is usually not permissible to include this
type of comment on the same line as code
Except when you have a very short line of type declaration.
Ex:
int x=5; //x is not an index, but 5 is a pretty number.

L S R T N S S S S S S S S e I S S S . P S S e I T i e e . S S N e T N S S i R B S S S S N . i T S S S R i S N R S S S S . S S A N S

/*
* If you import more than 3 or 4 classes from the
* same class I recommend you use .*

*/

import java.util.*;

*

A general description of:
What the class is,
What it should/can be used for,
How it should be used.

A more detailed description of:
How it should be used,
How the algorithms work.

Notes:
Precautions,
depreciations,
things that need work (TODO)

@author Matthew B. Mirman (mmirman@andrew.cmu.edu)
@version 1
@date (last edited date)

ok b > F X X X X X X ok o ok o ok ok X X

~

public class Style {

On curly brackets:
It does not matter if you put
your curly brackets on a new line
ex:
if (1<3)
{
..do something..
}
else
{
..do something else..

}

or if you put your curly brackets
on the same line
ex:
if (1<3) |
..do something..
telse(
..do something else..
}

as long as you are consistent.

The only things that should ever come after

a curly bracket on the same line are "else ... "
or "catch ... ". ©Not comments or other type

of code though. If you think of something else
that I am forgetting, tell me.

If you decide not to use curly brackets for a
block, I recommend you put the code in a block
on a new line after an indentation.
ex:
if (1<3)
i++;

KK AR KA KR KA R A AR A AR A AR A A KA A AR A AR AR A A A A A AR AR A A AR AR A AR AR AR ARk kK

Indentations:
It does not matter whether you use 4 space or tab,
as long as you are very very consistent.
Both have advantages and disadvantages.

4 space:
advantages:
-super consistent. It looks the
same on every text editor.
-Easier to format code how you want.
You can also use 1,2,3,4,5... spaces if
you so wish.
disadvantages:
-can take longer to write.
-fewer editors have support
for auto-formating using 4 spaces.
Tabs:
advantages:
-very quick to type.
-more auto-formatters
have support for them
—-can have size altered depending on editor.
disadvantages:
-They look different depending on editor.
-They encourage formating laziness.
-can not be mixed with 4-space.

b S R . S . e D S S . S S S S S S . S S i S S S S N S S S S S T S e S S S S S S . S R T S . S D S S S S i T S . S

/* Data *

****************************/

// Try to make data private and use getters and setters
private double x;

/* Getters and Setters *

* Place just below data *
****************************/

/**
* @return double x
*/
public double getX() {
return x;

}
/**

* @param x
*/
public void setX (final double x) {
this.x = x;

}

/* Equals, HashCode, toString *
* Try to always implement these *
* Note: These have been *

*
*

* autogenerated by eclipse
khk khkkhkkhkhkhkkhkhrhkhkhkhkhkdkrhkhkhhkhkkhrhkhhkhkhkx*x

/
/*

* Overridden methods do not necessarily need

* javadoc comments.

* (non-Javadoc)

* @see java.lang.Objectf#equals (java.lang.Object)

*/
@Override
public String toString() {
return "Style [X:" + x + H]n;
}
@Override

public int hashCode ()
final int prime = 31;
final long temp = Double.doubleToLongBits(x) ;
return prime + (int) (temp * (temp >>> 32));

-

@Override
public boolean equals (final Object obj) {
if (this == obj) {
return true;
}
if (obj == null) {
return false;
}
if (! (obj instanceof Style)) {
return false;
}
final Style other = (Style) obj;

return this.x==other.x;

/* Constructors *
***************************************/

If you have more than one constructor that

does mostly the same thing but with different
combinations of arguments, it might be helpful

to create an initialization method,

with all possible arguments, and simply call that
from each different constructor. The initializer
should be placed at the beginning or end of

the constructors.

b S R T S S e S I

/
/**

* Always include the empty constructor.
* If you want there to be no empty constructor
* make one that is private.

*/
public Style() {
setX (0) ;
}
/**

* This constructor simply sets the only data
* member, x, to what we expect it to be set as.
* @param x

*/
public Style (final double x) {
setX (x);
}
/**
* This is a copy constructor. for data based

* classes it is very nice to have.
*
*/

public Style (final Style other) {

/
Note that I do not use setX or getX here
because I want this Style to be an exact

copy of other Style, not whatever getX

and setX might change x to.

Be careful when setting references to objects
if those objects have copy constructors,

use them. Think about memory, and write
comments explaining how memory is handled.

Lo S R e

*

*/

this.x=other.x;

/* Methods *

******************************/

/*
* Methods should be organized by what they do.
*/

*

Here we return a new style object so that you can
call add within lines of equations, use that value
but not effect any of the original wvalues.
ex: suppose we had a Vec3D class with add, cross
scale, and dot that all behaved this way.
we could then write
Vec3D angle=a.add(b) .cross(c) .scale(b.dot(c));
which translates easily into math, as opposed to
Vec3D composite=new Vec3D(a);
composite.add (b) ;
composite.cross(c);
composite.scale (Vec3D.dot (b,c));
@param b
@return the sum of this's "x" value and b's "x" wvalue.
@throws NullPointerException if b is null

O R N T S S S S S S S S

~

public Style add(final Style D) {

/

Note that here we throw a null pointer exception
within the method, but we don't have
"throws NullPointerException" in the method name.

it shouldn't continue blindly computing stuff

to have to surround this method with a try/catch every time he
wants to call it. We do declare that it is possible for

though, because it makes using it a bit easier.

/
(b==null)
throw new NullPointerException();

b T T e S S S S . S

™)
Fh

While if a programmer is stupid and puts a null into this method

(more of an issue with more code), we don't want the programmer

this method to throw a nullPointerException in the method description

//create a new style object with the sum of this.getX() and b.getX()

return new Style (this.getX () +b.getX()):;

/
Here, we used getX() because what if some time in the future
the programmer should decide either to extend style such that
x is really a function of x, or change that here.

It is much easier to do if you only ever use getX and setX.
There are cases where this isn't necessary

L S R

*

This method is just an example of using holder variables
so that repeated operations only need to happen once.
Not doing this can vastly increase the time complexity.
You should try to reduce the number of divides,
Math.sgrt and Math.pow as much as possible, because these
are really slow. But optimize smart. If removing a sgrt
means you have to put in 15 other lines of code,
it is probably not more efficient, and much uglier.
Readability usually takes precedence over efficiency,
but something like

for (int i=0;i<Math.sgrt (n-i);i++)
could easily be changed to

for (int i=0;i*i+i<n;i++)
without effecting readability.

@param c is the square route of the number
of times x should be squared.

P T T T S R T S N N

~

public void power (final int c) {
int c_squared=c*c;
for (int i1=0;i<c_squared;i++) {
//getX could be very slow, we use a holder variable.
final double x hold = this.getX();
setX (x_hold*x hold);

*

If you ever use the same math/code twice or more,
and that code is more than 3- 5 operations or calls
long or is unexplained,

don't hesitate to write a helper method.

You should do this to
-Eliminate code redundancy (even preemptively)
-Reduce amount of code that needs to be changed
in the case of a bug
-Make code easier to read by giving sequences of
operations descriptive names

In general, these make the most sense
as private or protected.

@param i is the row number

@param j is the column number

@return the index into

@throws ArrayIndexOutOfBoundsException
if 1 or j are smaller than zero

b . R N T S S S S S T . e S I

~

private int getIndexHelper (final int i, final int 3j) {
if (i<0 || 3<0)
throw new ArrayIndexOutOfBoundsException () ;
return (int)Math.floor(i*x+7j);

/*

* Using final:

* if a variable isn't changed within a method,

* don't hesitate to use final, but try to anticipate

* it not being changed. Do hesitate to make class

had data final, methods final, and classes final.

* Making things final helps keep you from accidentally
* changing a variable, then trying to access it's original
* value after it has been changed.

*

*

* If you don't know what final is, don't worry about it,
* and don't use it.

*

