15-123:

Effective Programming in
C and Unix

With Hunter Pitelka

Exam 2 Review

Recitation 8
Wednesday October 15th, 2008

Overview

* 2 questions, do them.

* Lets go over the solution

* Some quick Q&A.

Dynamic Memory

Write a C program that will read 1n a file with a
specified number of lines, build an array out of the
file (each line will have exactly one integer).

Print the array backwards.
No error checking 1s necessary.

usage: ./buildArray size filename

1.Dynamic Memory

#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[]) {

FILE* fp;
int input,size, i;
int *array;

if(argc !'= 3){
printf ("Usage: %s size filename\n",argv[0]);

exit (-1);
}

size = (int) strtol (argv[1l],NULL,10);
array = (int *) malloc(sizeof (int) *size);

fp = fopen(argvi[(2],"r");

i = 0;

while (fscanf (fp, "%d\n", &input) != EOF) {
array[i] = input;
i++;

}

for (i=size-1;1i>=0;1--) {

printf ("%d\t",array[i]);
}
printf ("\n");
free (array) ;
array = NULL;
return 1;

Dynamic Memory Questions

How would you change this from reading numbers
to strings’?

How would you change this to allow for invalid lines
in the file?

What would you do to check for a valid file?

How would you test this program?

#!/bin/bash

if [S# —ne 2]1; then
echo "Usage: $0 filename buildArrayExecutable ";
exit;

fi

cat $1 | nl | sort -r | cut —-f2 | tr "\n" "\t" > bashOutput

echo >> bashOutput

lines="cat $1 | wc -1 ;
“./${2} $lines $1 > Coutput’

diff bashOutput Coutput

rm bashOutput Coutput

School of Computer Science

2. isInL L (linkedlist list, char *word);

int isInLL(linkedlist *1list, char *word) {
node *current;

1 (NULL == 1list) {
return ERR_NULL_LIST;

1f (NULL == item) {
return WARN_INVALID_ ARGUMENT;

1f(0 == list->count) {
return WARN_ELEMENT_NOT_IN_ LIST;

current= list->head;

while (strcmp (current—->data,word) != 0) {
current = current—->next;
1f (NULL == current) {

/*we have reached the end of the linked list, the
element 1is not here */
return WARN_ELEMENT_NOT_IN_LIST;
}
}

/* if the while loop ends, and we are here, then the item must be

current—->data*/
return SUCCESS;

}

Final Words

* Write lots of test practice programs

* Expect lots of

~ memory
— pointers
— function calls

— I/O processing

kthxbai

