
Simulator and Assembler

The Assignment

You are provided with a description of a simple computer’s Instruction Set Architecture (ISA),

including its instruction set, instruction format, and register list. Your task is to write a simulator and

assembler for the described architecture. After completing this assignment, it will be possible to write

programs in assembly, process them with your assembler, and execute them on your simulator.

Educational Objectives

This assignment is designed to help build your understanding of simple processors and the fetch-decode-

execute cycle as well as the role of assembly language in software development. It will also provide

reinforcement in C Language Programming, especially in the use of the bit-wise operators and function

pointers.

The Instruction Set Architecture (ISA)

The Instruction Set Architecture (ISA) provides a view of a processor’s features as seen from the

perspective of an assembly or machine language programmer. For our purposes, this means that the ISA

describes the instructions that the processor understands, the way those instructions are presented to the

processor, the register set, and the way memory is organized. A real-world processor’s ISA would also

include a few additional items, such as its interrupt and/or exception handling facilities, basic data types,

and different modes of operation, e.g. supervisor vs. normal mode.

Registers are a special type of memory built into the processor. They basically serve as special variables

accessible to the Arithmetic and Logic Unit (ALU), the brains of the processor that actually executes

most instructions. You'll find that most instructions operate on the values in the registers instead of

operating directly on memory. As a result, you'll load values from memory into registers, operate on

them, and then store them back into memory. This arrangement is called a load-store architecture.

There are seven (7) general purpose registers that can be used for any purpose. Additionally, there is a

zero register that always contains a constant 0 value to be used for initializing other registers to 0. The

same register can be read and written within the same instruction, so, for example “A = A + 5” is legal

as is “A = A + A”.

The program counter (PC) is a special purpose register that keeps track of the current address in

memory, the address that the processor is currently executing. Since instructions are 4-bytes wide, the

PC moves forward by four bytes with each instruction cycle. The instruction register (IR) is a scratch

register used to decode instructions. The PC is 24-bits wide. The IR is 32-bits wide.

The simulated machine has a 2-byte word size, so registers and immediate values are 2-bytes wide. For

those who are familiar, negative numbers are represented in twos-compliment notation. For others it is

important to know only that the left-most bit is 1 if, and only if, the value is negative – and that addition

and subtraction can be emulated using the standard C operators plus and minus.

The simulated system also has two flags, which are set by various instructions: The overflow flag is set

upon a mathematical operation to true, if an operation overflows (carries) outside of 16 bits, and to false

otherwise. The compare flag is set upon a comparison operation to true if the comparison operation is

true, and it is set to false otherwise. The flags cannot be set directly.

Ports are a mechanism for accessing input and output devices that are independent from main memory.

Port #15 is a terminal device console used for output. Port #0 is a terminal device console used for input.

Each reads or writes one character at a time, translating from that character to the ASCII value. The

terminal device has sufficient buffering to avoid dropping character in normal applications.

The system’s main memory is byte addressable. In other words, bytes are addressed and addresses range

from byte-0 through byte 2
24

-1.

Ports

 Purpose Binary Notes

 --

 Input 0000 0000 Returns ASCII code of character read from terminal

 Output 0000 1111 Writes ASCII code of character to terminal

Registers

 Register Number Notes

 --

 Z 000 Constant: Always zero (0)

 A 001

B 010

 C 011

 D 100

 E 101

 F 110

G 111

PC Program Counter. Not addressable

IR Instruction register. 32-bits wide. Non addressable.

Instructions

---------------Control------------

Instruction -Op- ----Address---

 HLT 0000 0000 0000 0000 0000 0000 0000 0000 Stop simulation

 JMP 0001 0000 AAAA AAAA AAAA AAAA AAAA AAAA Jump

 CJMP 0010 0000 AAAA AAAA AAAA AAAA AAAA AAAA Jump if true

 OJMP 0011 0000 AAAA AAAA AAAA AAAA AAAA AAAA Jump if overflow

------------Load/Store------------

Instruction -Op- Reg0 ------------Value------------

LOAD 0100 0RRR AAAA AAAA AAAA AAAA AAAA AAAA Load

 STORE 0101 0RRR AAAA AAAA AAAA AAAA AAAA AAAA Store

LOADI 0110 0RRR 0000 0000 IIII IIII IIII IIII Load Immediate

NOP 0111 0000 0000 0000 0000 0000 0000 0000

 -----------------Math--------------

 Instruction -Op- Reg0 Reg1 Reg2 0000 0000 0000 0000

 ADD 1000 0RRR 0RRR 0RRR 0000 0000 0000 0000 Reg0 = Reg1+Reg2

 SUB 1001 0RRR 0RRR 0RRR 0000 0000 0000 0000 Reg0 = Reg1-Reg2

 -----------Device/IO--------------

Instruction -Op- Reg0 0000 0000 0000 0000 –-Port --

 IN 1010 0RRR 0000 0000 0000 0000 PPPP PPPP Read port->Reg0

 OUT 1011 0RRR 0000 0000 0000 0000 PPPP PPPP Write Reg0->Port

------------Comparison-------------

 Instruction -Op- Reg0 Reg1

 EQU 1100 0RRR 0RRR 0000 0000 0000 0000 0000 Cflg=(Reg0==Reg1)

LT 1101 0RRR 0RRR 0000 0000 0000 0000 0000 Cflg=(Reg0<Reg1)

 LTE 1110 0RRR 0RRR 0000 0000 0000 0000 0000 Cflg=(Reg0<=Reg1)

 NOT 1111 0000 0000 0000 0000 0000 0000 0000 Cflg=(!Cflg)

Writing and Assembling a Program By Hand

A program is a text file with one instruction per line. Each line should be a very simple space-delimited

line. It can include comments, which begin with a #. When you first write out the program by hand,

number the lines, ignoring comment lines. Use the line numbers in place of addresses for jumps.

 # This program gets two single-digit numbers, A and B, from the user

 # Then prints out the numbers A through B

 1.LOADI A 1 # Get the number 1 into register A

 2.LOADI B 48 # 48 is int value of '0', pseudo-constant

 3.IN C 0 # Get starting point in ASCII

 4.SUB D C B # Get integer value of input character

 5.IN C 0 # Get ending point in ASCII

 6.SUB E C B # Convert ending from ASCII to int val

 # Starting value is D, ending value is E

 7.LTE D E # (D <= E)

 8.NOT # !(D <= E) --> (D > E)

 9.CJMP {Line 13} # If (D > E) from above, exit loop

 10.ADD C D B # Convert D as int into ASCII

 11.OUT C 15 # Print out the number

 12.ADD D D A # Increment D

 13.JMP {Line 6} # Go back to the top of the loop

 14.HLT

Once you are done writing out the program, multiple each line number by 4. This will give you the

address of that line of code within memory. This is because each instruction is 4 bytes long. Rewrite the

program replacing the line numbers with addresses in hexadecimal.

 # This program gets two single-digit numbers, A and B, from the user

 # Then prints out the numbers A through B

 LOADI A 1 # Get the number 1 into register A

 LOADI B 48 # 48 is int value of '0', pseudo-constant

 IN C 0 # Get starting point in ASCII

 SUB D C B # Get integer value of input character

 IN C 0 # Get ending point in ASCII

 SUB E C B # Convert ending from ASCII to int val

 # Starting value is D, ending value is E

 LTE D E # (D <= E)

 NOT # !(D <= E) --> (D > E)

 CJMP 0x34 # If (D > E) from above, exit loop

 ADD C D B # Convert D as int into ASCII

 OUT C F # Print out the number

 ADD D D A # Increment D

 JMP 0x18 # Go back to the top of the loop

 HLT

Now, convert this program into binary, by translating each mnemonic into the binary equivalent shown

in the “Instructions” section. Do the same with each value.

This program gets two single-digit numbers, A and B, from the user

Then prints out the numbers A through B

Get the number 1 into A register

LOADI A 1

 0110 0001 0000 0000 0000 0000 0000 0001

LOADI B 48 # Subtract 48: ascii char -> int value

 0110 0010 0000 0000 0000 0000 0011 0000

Get starting point in ASCII from port 0

IN C 0

 1010 0011 0000 0000 0000 0000 0000 0000

Get integer value of input character

SUB D C B

 1001 0100 0011 0010 0000 0000 0000 0000

Get ending point in ASCII from point 0

IN C 0

 1010 0011 0000 0000 0000 0000 0000 0000

Convert ending from ASCII to int val

SUB E C B

 1001 0101 0011 0010 0000 0000 0000 0000

Starting value is D, ending value is E

(D <= E)

LTE D E

 1110 0100 0101 0000 0000 0000 0000 0000

!(D > E) --> (D > E)

NOT

 1111 0000 0000 0000 0000 0000 0000 0000

If (D > E) from above, exit loop

CJMP 0x34

 0010 0000 0000 0000 0000 0000 0011 0100

Convert D as int into ASCII

ADD C D B

 1000 0011 0100 0010 0000 0000 0000 0000

Print out the number to port 15

OUT C F

 1011 0011 0000 0000 0000 0000 0000 1111

Increment the number

ADD D D A

 1000 0100 0100 0001 0000 0000 0000 0000

Go back to the top of the loop

JMP 0x18

 0001 0000 0000 0000 0000 0000 0001 1000

HLT

 0000 0000 0000 0000 0000 0000 0000 0000

Lastly, convert the binary representation into hexadecimal. This is a fully assembled program.

Each line represents a single 4-byte instruction. The first line resides at address 0, the second line resides

at address 4, the third at address 8, and so on.

Although real-world computers use an actual binary representation without new lines, we think you’ll

appreciate this format which captures the same information in a more parseable, more human-readable

way.

 0x61000001

0x62000030

0xA3000000

0x94320000

0xA3000000

0x95320000

0xE4500000

0xF0000000

0x20000022

0x83420000

0xB3F00000

0x84410000

0x10000012

0x00000000

The Assembler (Look, Ma’: No Hands!)

Your assembler is called “sas”. It accepts an assembly source file, parses it, and translates it into an

executable object file. It uses exactly the same process as illustrated previously. In other words, the

program parses each line of the source file and translates it into hexadecimal. Each op code is then

recognized, looked up in a table, and outputted. Then, each operand is recognized, translated, and

outputted.

There are many ways of reading and parsing each line of input. Our suggestion is this:

1) Structure your assembler as a loop that iterates once for each line of input from the file.

Break out fo the loop upon hitting the end of the file.

2) Read the line in using fgets().

3) Use strchr() to look for the first # and, if you find it, turn it into a null character. This makes

comments go away

4) sscanf() works like scanf() or fscanf(), except the input comes from the string provided as the

first argument, rather than a file or stdin. Use it to try to read four strings – this is the

maximum number of tokens in a line of assembly. I would call them instruction, arg0, arg1,

and arg2.

5) It will return the number that it actually got. If this is 0, continue – it was a comment line.

6) Otherwise, look at instruction and you’ll know which instruction it is – and what the format

is.

7) Now, just use a macro to shift each of the pieces of information into the right place and use

bitwise OR to assemble them. For example, consider an ADD. The arguments will be the

destination, and the two operands. The machine code can be assembled using a macro as

follows:

#define ADD(dest,op1,op2)

((ADD_OP<<28) | ((dest)<< 24)| ((op1) <<20) | ((op2)<< 16))

So, you might print out your line of machine code as:

 printf (“0x%X\n”, ADD(arg0, arg1, arg2));

8) Wash, rinse, repeat

The name of the input and output files are specified at the command line:

sas input.s output.o

The Simulator

The simulator models the processor, the main memory, and the described terminal devices via ports.

When run, it loads a compiled program into memory and simulates its execution until it halts.

Memory

Memory can be simulated as simply an array of unsigned chars of this size. This provides a byte-

indexed memory. In order to interpret the lower addresses that contain the program text, you can

assign an “unsigned int” pointer to the same array, or make use of a union. This way, when

accessing word-oriented instructions, you can use the “unsigned int *”, giving you a whole word

at a time – just remember to divide the desired address by 4 because of pointer arithmetic.

Since relatively few programs will require a simulation of the entire physical memory, the

program should accept the size of physical memory as a command line argument. It need only

simulate the requested amount of memory.

Loading A Program Into Simulated Memory

To load the program, read each input line into memory. We suggest that you first do this by

reading it into a temporary variable, an unsigned int, and then copying this into the unsigned char

array simulating memory. The code below illustrates the idiom:

 unsigned int instruction;

fscanf (“0x%x”, &instruction);

 memcpy (memory + address, &instruction, sizeof(instruction));

You are, of course, free to take a different approach. But, we strongly suggest the technique

above – it dodges some potentially complicating issues. If you insist on taking a different

approach, ask a friend in 15-213 about Endian-ness first. You’re probably in for more of a ride

than you expect. Really.

The Register File

Since general purpose registers are 16-bits wide, they can be implemented as an array of

unsigned shorts. This way the register number can serve as the index. Since the special purpose

registers are larger, they should be implemented using unsigned ints, a 32-bit type.

The Processor and Execution

Assuming that all of the instructions have been loaded into memory, the processor can be

simulated using a fetch-decode-execute work loop. During execution, the processor fetches the

next instruction by loading the instruction referenced by the PC from memory into the

instruction register (IR). This is simply a scratch register used by the processor to decode the

instruction.

Once this is done, the PC is incremented to prepare for the eventual next processor cycle. The

next step is to decode the op code, the 4-bit number associated with the operation. This can be

done by shifting right to eliminate the other bits. Careful here: unless you are using unsigned

ints, you’ll get bitten while shifting because of the sign bit.

At this point, you are able to dispatch the instruction. Because one goal of this assignment is to

reinforce your understanding of function pointers, you are asked to use an array of function

pointers for this purpose.

For each instruction, you should create a function. Then, each of these functions should be

mapped into an array of function pointers, where each function’s index is its op code. This

makes the dispatch very easy. For example, if your array is called ops, the dispatch is as easy as

*(ops[opcode])().

Once within the instruction, you’ll need to decode the operands and execute. Before considering

the implementation, take a second look at the instructions. Notice that there are six different

instruction formats. Write macros that use bit masks to decode the operands present in each of

these formats:

 REG0

 REG1

REG2

IMMEDIATE

ADDRESS

For example:

#define REG0 ((IR >> 24) & 0x0F)

1

0

2

3

4

…

15

ops

HLT()

JMP()

CJMP()

LOAD()

NOT()

Once the operands have been decoded, you are free to implement the logic of the instruction.

Perform any needed computation, then write back the values to the registers. If the instruction is

a jump you’ll need to update the PC. The simulation ends when the HLT instruction is called.

This instruction should exit rather than returning.

Once the function implementing the operation returns, the simulation can loop back to the

beginning of the fetch-decode-execute loop and repeat.

The Terminal Devices via Ports

The terminal devices are simulated only within the IN and OUT instructions. Implementing the

OUT instruction is as simple as a write(1, …). The IN instruction can similarly be implemented

using a read(0,…).

For those interested, this does mean that the processor is polling the port until it is able to supply

or accept a character – and this isn’t a very good use of a processor. But, since this is really

straight-forward to implement with read() and write(), it is a really good use of a programmer.

The Simulator

The simulator should be called “ssim”. It should actually load and then execute a correct, compiled

program. It should be implemented in accordance with the model described above.

The physical memory size and executable file name should be specified as command-line arguments:

 argv[1] provides the size of your physical memory in bytes.

 argv[2] provides the name of the executable program

For example:

 ssim 0x1000 sampleprogram

The simulator does not include any model exception handling facility. As a consequence, it cannot

handle error states, such as invalid executables, bad memory accesses, and the like. Should any of these

circumstances arise, it simply terminates with an informative error message.

Numerical Notation

Any literal value can be expressed in either decimal or hexadecimal notation – your program should be

able to do the Right Thing. Hexadecimal numbers will always be prefixed with “0x”, e.g., “0xAB12”.

Decimal numbers will not have any prefix.

