T/F 15 n + 100 n2 = O(n2)
T/F 6 n log n + 4 n = O(n)
T/F log(n2) + 4 log(log n) = O(log n)
T/F 2 n1/2 + 34 = O(n2)
T/F 3n + 100 n2 + n200 = O(2n)
String [ ][ ] str = new String[n][n]; for(int k = 0; k < n; k++) foobar(str[k]);
public Stack crazyStackMethod(int[][] a)
{
Stack stack = new Stack();
for(int i = 0; i < a.length; i++)
{
for(int j = 0; j < a.length; j++)
{
Stack tempStack = new Stack();
stack.push(a[i][j]);
while(!stack.isEmpty())
{
tempStack.push(stack.pop());
}
stack = tempStack;
}
}
return stack;
}
public class Stack
{
private Queue Q = new Queue();
public E pop()
{
int k = 1;
while( k++ < Q.size() )Q.enqueue(Q.dequeue());
return Q.dequeue();
}
public void push(E o)
{
Q.enqueue(o);
}
}If Q.enqueue(o) and Q.dequeue() takes O(1) time what is the worst-case runtime complexities of push(o) and pop()?