15-110: Principles of Computing
Recitation: Regular Expressions, FSMs, and File 1/0 (July 28, 2011)

In computer science, a language is defined to be a set of strings made up by characters from an
alphabet X. A string s is determined to be in the language if they fit the membership requirements
of the language. A regular language is a language where all the strings in the language match one
or more given regular expressions. For example, the most trivial regular language is the language that
contains only the empty string, €. Another example of a regular language is the set of strings that
match the regular expression "Hello|World". Its members consist exactly of two words: Hello and
World.

1. Defining and Proving Regular Languages
Problems related to regular languages are usually given as:

There exists a regular language L such that
L = {x|xis a string of zero or more a's}

Prove that L is or is not regular.

To formally prove that a language is regular, one only needs to supply a regular expression that matches
all of the strings in the language, or a FSM or DFA that matches the language. Sometimes it is easier
to provide a regular expression to prove that a language is regular, sometimes it is easier to provide a
FSM. In the above case, L is regular because the language can be defined by the regular expression ax*.

Prove that the following languages are regular by supplying a regular expression that matches
all strings in the language.

(@) L = {z | x is made up of an even number of a’s}

(b) L = {z | = starts and ends with two b’s}

(c) L = {z | = is a binary number}.

(d) L = {z | z is an English name that starts with a capital letter}

(e) L = {x | = is a Roman numeral less than 9000}

(f) L = {x | x is a bill item of the form Item: $DD.CC. e.g. Fried Rice: $123.45}

(g) Solve each of the above problems by supplying a FSM that matches the language.

2. Challenging Problems

(a) Prove that the language L = {z | z is a binary representation of a non-negative multiple of 3}
is regular. e.g. 11, 1001, 100001

(b) Prove that the language L = {ww | w is any string} is not regular.

(c) Write a regular expression that checks if an e-mail address is valid. Hint: Look for
Mail::RFC822::Address

3. File Input/Qutput

In the computing world, files are an important part of everyday life. Programs read in data from files,
and output computed results into other files. In some operating systems (e.g. UNIX), files are so
important that everything (user input, Internet connections, etc.) is abstracted away as a collection of
files! Thus, a necessary tool in a programmer’s arsenal is the ability to work with files.

In Python, file 1/O is done through file objects. When one opens a file in Python, they create the file
object and can call several functions that will let the user read or write from the opened file.

When opening a file, one can supply Python with a mode string. This will tell Python what you want
to do with the specific file. The modes available are:

Note:

r: This mode opens the file in read-only mode. That is, the user will only be able to read from
the file.

w: This mode opens the file in write mode. That is, the user will be writing to the file. WARNING:
If the file already exist, it will be erased.

a: This mode opens the file in write mode but will not erase the file, and start writing at the end
of the file.

r+: This mode opens the file in both read and write mode. This lets the user read and write to
the file at the same time. Useful for special files like databases.

If you append a b to the mode string, e.g. ab, it opens the string in binary mode.

open(filename, mode): This function will open the file at the given mode. A successful call
will return a file object.

close(): This function will close the file object. It is good practice to close a file when one is
done using it.

read(size): This function will read up to size bytes from the file and return them, and move
the seek pointer by the appropriate number of bytes (meaning you have to set the seek pointer
back to 0 if you want to read from the beginning of the file again). size is an optional argument
so if you call read(), it will read and return all of the file's contents.

readline(): This function reads and returns exactly one line of input from the file (up to and
including the newline character "\n"). If it hits the end of the file and there is no newline
character, it will not include the newline.

readlines(size): This function reads and returns all the lines in a files as a list of lines. size
is an optional argument that when given, will make the function read up to size bytes in the file
and return only the lines in those bytes. If a line is cut-off, it will return the whole line.

write(str): This function writes the string str onto the file starting from the current seek
position.

seek(n): This function changes the seek point to the n+1'th byte in the file. e.g. seek(0) will
move the seek pointer to the first byte in the file, seek(1) the second byte, and so on.

closed: This value is a bool that will tell the user whether or not a file is closed.

(Example 1)

Let's try a simple example where we write out a list of ints from 0 to 999 to a file called 15110ints.txt.

intList = range(0, 1000)
intFile = open("15110ints.txt", "w")
for myInt in intList:
tempStr = str(myInt) + "\n"
intList.write(tempStr)
intFile.close()

The above code block first converts a single int to a string (with an attached newline character) and
then writes it to the file. Once it finished writing all of the ints to the file, it then closed the file.

(Example 2)

If we want to get the ints back from the file, we only have to do the following:

intFile = open("15110ints.txt", "r")

inputlList = []

for myInt in range(O, 1000):
inputStr = intFile.readline()
inputInt = int(inputStr)
inputList += [inputInt]

intFile.close()

This opens the file, reads in a line, converts the string to an int, and then adds the int to a list, repeats
the read-convert-add process up to a thousand times and then closes the file.

If we rewrite the code using the readlines() function, it will look like the following:

intFile = open("15110ints.txt", "r")

inputList = []

for inputStr in intFile.readlines():
inputInt = int(inputStr)
inputList += [inputInt]

intFile.close()

The readlines () function is rather convenient when you have to read in a bunch of lines and do not
know how many lines there are in the file.

Protips

inputlist = []
with open("15110ints.txt", "r") as intFile:
for inputStr in intFile.readlines():
inputList += [int(inputStr)]

Python provides a neat feature where with the with...as... syntax, you would not have to worry
about closing the file object outside of the block because Python does it automatically for you. The
above code block is identical to the previous code block except that it uses the with...as... syntax.

Challenge: Go to http://projecteuler.net/index.php?section=problems&id=22, download
names.txt and try solving the problem (ask a CA if your answer is correct).

