Name:

15-111 Test #3 (Sample - Revised)

1. Please describe the strategy behind the use of a hash table. In other words, “ How do hash
tableswork?’ Y our answer should include a description of collision and the goal of collision
resolution, but it should not describe the specific details of any particular collision resolution
technique.

2. Please implement the following method for the BinarySearchTree class we used during lecture
and in the assignment. If you would like to review the other methods, instance variables, &c,
most of the rest of the classis attached.

/*
* Recursive nethod which inserts a new el enent
* into the tree. The tree nust stay ordered after
* the new el enent has been added
*/
private Bi naryNode insert (Bi naryNode root, Conparabl e data)
{
/*
* You' re code here
*/

3. Please show the deletion of 23 from the BST below. Specificaly, please draw figure(s)
showing the tree after each step of the algorithm and label your figure(s) descriptively.

50

4. Please show the deleteMin() operation acting on the MinHeap below. Specifically, please
draw figure(s) showing the tree after each step of the algorithm and label your figure(s)

descriptively.
10
ofolole
~)

5. We discussed two different data structures used to represent graphs, the adjacency list and the
adjacency matrix. Each representation has costs and benefits. Please explain the trade-offs
between the two data structures and provide a comparatively good and bad application for each.

6. Please draw a picture that show the tree resulting from the Depth-First Search (DFS) rooted at
Node-3 of the graph below.

7. Please show the pseudo-code or Java-code for the DepthFirstTraversal() method. This method
should simply output the number of each node asit is visited using a breadth-first traversal (like
a breadth-first search).

Please write this method for an adjacency list representation of a graph. Please keep in mind the
operations that an adjacency list is likely to support, as well as those that it is not likely to
support. If you are uncomfortable estimating these operations, a skeleton of an AdjacencyList
classis attached. It contains a sufficient set of operations to answer this question.

public static void DepthFirstTraversal (int NodeNumber);

8. In class we discussed Dijksta' s algorithm. Please show the progression of Dijkstra’ s algorithm
asit finds the shortest path from Node-2 to Node-5 within the graph below by doing two things.

a) Darken the edges of the graph that are included in the shortest path and number them
in the order in which they become known.

b) Show the step-by-step progression of the algorithm by drawing the table used bly the
algorithm. Y ou may redraw the table after each step, draw the table once and clearly
mark the changes to the table for each step (in away that we can understand them), or
some combination of the two

9. In class we discussed Prim’s agorithm for finding the Minimum Spanning Tree. It was
extremely similar to Dijkstra’s algorithm for finding the shortest path, but the algorithms do
differ substantially at one critical step. How do the two algorithm differ? Why?

Please note: This question isn’'t asking for a defintion of a minimum spanning tree, nor isit
asking for either algorithmin detail. Instead, it is specifically asking for and about the difference
in the agorithms. If it helps, please assume that we know one algorithm or the other and explain
to us how to adapt one algorithm to form the other and why we need to make the change.

/*
* AdjacencyList public interface

*/

class AdjList

{
private class Edge
{

public Edge(int vertex, int cost);

public Edge(int vertex);

public boolean equals(Edge other_edge);
}

public AdjList(int num_vertices);

public addEdge(int vertex_from, int vertex_to, int cost);
public removeEdge(int vertex_from, int vertex_to);
public Listlterator getAdjacencies (int vertex)

public Edge getEdge(int vertex_from, int vertex_to);

public class BinarySearchTree

{
private class Bi naryNode
{
private Conparabl e data; /! the data to be stored in the node
private Bi naryNode |eft; /1 the left child of the current node

private Bi naryNode right; /1 the right child of the current node

publ i ¢ Bi nar yNode(Conpar abl e dat a)

{
this.data = data;
left = null;
right = null;

}

publ i ¢ Bi nar yNode(Conpar abl e data, BinaryNode |eft, BinaryNode right)
{

this.data = data;
this.left = left;
this.right = right;
}
private Conparabl e get Dat a()
{
return data;
}
private Bi naryNode getlLeft()
{
return left;
}
private Bi naryNode get R ght ()
{
return right;
}
private void setlLeft(BinaryNode left)
this.left = left;
}
private void setR ght(Bi naryNode right)
{
this.right = right;
}
private bool ean islLeaf ()
{
return (left == null & right == null);
}

}

private Bi naryNode root;

publ i c Bi narySearchTree()
{

/1l the tree will initially be enpty, so set root to nul
root = null;

}

public void insert(Conparabl e data)

if (null == data)
{
return;
}
root = insert(root, data);
}
/*

* Recursive nethod which inserts a new el enent

* into the tree. The tree nust stay ordered after

* the new el enent has been added

*/
private Bi naryNode insert(Bi naryNode root, Conparabl e data)
{

/*
* You're code here
*/
}
publ i c Compar abl e fi nd(Conpar abl e dat a)
if (null == data)
{
return null;
}
return find(root, data);

}

private Conparabl e find(Bi naryNode root, Conparabl e data)
{

/*
* Not provided
*/
}
public void del et e(Conpar abl e dat a)
if (null == data)
return;

root = delete(root, data);

}

private Bi naryNode del et e(Bi naryNode root, Conparabl e data)

if (null == root)

{
}

return null;

i f (data.conpareTo(root.getData()) == 0)

{

}

if (root.isLeaf())
{

}

if (root.getlLeft() == null)

return null;

return root.getRight();
}

if (root.getRight() == null)
{

}

return root.getlLeft();

Conpar abl e r epl acenent Dat a = get Ri ght nost (root. getLeft());
return new Bi nar yNode(r epl acenent Dat a,
del ete(root.getlLeft(), replacenentData),
root.getRight());
el se if (data.conpareTo(root.getData()) < 0)

root.setlLeft(del ete(root.getlLeft(), data));
return root;

el se

{

}
}

root.setRight (del ete(root.getRight(), data));
return root;

private Conparabl e get R ght nost (Bi nar yNode root)

{

if (root == null)
return null;

if (root.getRight() == null)

{
return root.getData();
}

el se

{
return get R ghtnost(root.getR ght());

}

public void printlnCrder()

{
if (null == root)
{
Systemout.printin("Tree is enpty");
}
el se
{
printlnCrder(root);
}
}
private void printlnOder(Bi naryNode root)
if (null == root)
{
return;
}

printlnCrder(root.getlLeft());
Systemout.println(root.getData());

printlnCrder(root.getRight());

