Name:

15-111/200 Test #3
Summer-1 2005
1. Please implement the following method for the BinarySearchTree class we used during lecture and in the assignment. If you would like to review the other methods, instance variables, &c, most of the rest of the class is attached.

 /*

 * Recursive method which inserts a new element

 * into the tree. The tree must stay ordered after

 * the new element has been added

 */

 private BinaryNode insert(BinaryNode root, Comparable data)

 {

 /*

 * You’re code here

 */

 }

2. Please implement the following method for the BinarySearchTree class we used during lecture and in the assignment. If you would like to review the other methods, instance variables, &c, most of the rest of the class is attached.

 /*

 * User method for finding an element in the tree.

 * It returns null if the data isn't found, or a

 * reference back to the data if it is found.

 */

 public Comparable find(Comparable data)

 {

 /*

 * You’re code here

 */

 }
3. Please show the deletion of 23 from the BST below. Specifically, please draw figure(s) showing the tree after each step of the algorithm and label your figure(s) descriptively.

4. Please show the deleteMin() operation acting on the MinHeap below. Specifically, please draw figure(s) showing the tree after each step of the algorithm and label your figure(s) descriptively.

5. Please show the insert(6) operation acting on the MinHeap below. Specifically, please draw figure(s) showing the tree after each step of the algorithm and label your figure(s) descriptively.

6. Please show the progression of heapsort as it sorts the following list of numbers in ascending order. Please also label each step.

1 9 5 7 6 9 0 11 2 3 8
7. Explain the strategy or intuition behind heapsort.

8. What is the Big-O of heapsort? Why?
9. Please provide the pre-, post-, and in-order traversals of the following tree:

[image: image1.png]

public class BinarySearchTree

{

 /*

 * class to represent an internal node of the binary tree

 */

 private class BinaryNode

 {

 private Comparable data; // the data to be stored in the node

 private BinaryNode left; // the left child of the current node

 private BinaryNode right; // the right child of the current node

 /**

 * A constructor for the BinaryNode class, takes in only the data

 * to be stored and sets the left child and the right child to

 * null

 */

 public BinaryNode(Comparable data)

 {

 this.data = data;

 left = null;

 right = null;

 }

 /**

 * Another constructor for the BinaryNode class, takes in the data

 * to be stored, a reference to the left child, and a reference to

 * the right child

 */

 public BinaryNode(Comparable data, BinaryNode left, BinaryNode right)

 {

 this.data = data;

 this.left = left;

 this.right = right;

 }

 /*

 * Returns a reference to the user's record

 */

 private Comparable getData()

 {

 return data;

 }

 /*

 * Returns a reference to the left child

 */

 private BinaryNode getLeft()

 {

 return left;

 }

 /*

 * Returns a reference to the right child

 */

 private BinaryNode getRight()

 {

 return right;

 }

 /*

 * Changes the left child of the node

 */

 private void setLeft(BinaryNode left)

 {

 this.left = left;

 }

 /*

 * Changes the right child of the node

 */

 private void setRight(BinaryNode right)

 {

 this.right = right;

 }

 /**

 * Returns true if this node has no children,

 * false otherwise

 */

 private boolean isLeaf()

 {

 return (left == null && right == null);

 }

 }

 /*

 * declare instance variables here

 */

 private BinaryNode root;

 /**

 * Constructor for the BinarySearchTree class

 */

 public BinarySearchTree()

 {

 // the tree will initially be empty, so set root to null

 root = null;

 }

 /*

 * User method for inserting a new record

 * into the tree.

 */

 public void insert(Comparable data)

 {

 // if data is a null reference, it cannot be compared, so

 // reject it

 if (null == data)

 {

 return;

 }

 // begin the recursion at the root node

 root = insert(root, data);

 }

 /*

 * Recursive method which inserts a new element

 * into the tree. The tree must stay ordered after

 * the new element has been added

 */

 private BinaryNode insert(BinaryNode root, Comparable data)

 {

/*

 * You’re code here

 */

 }

 /*

 * User method for finding an element in the tree.

 * It returns null if the data isn't found, or a

 * reference back to the data if it is found.

 */

 public Comparable find(Comparable data)

 {

/*

 * You’re code here

 */
 }

 /**

 * Recursive method which traverses the tree until

 * it either finds the data it is looking for, in which

 * case it returns a reference to that data, or hits the

 * end of a path, in which case it returns null.

 */

 private Comparable find(BinaryNode root, Comparable data)

 {

 // if the root is null, we've run out of places to look

 // so return null to signify that the data wasn't found

 if (null == root)

 {

 return null;

 }

 // if the data at the current node matches what we are

 // looking for, we have found it, so return back the

 // data object that we found

 if (root.getData().compareTo(data) == 0)

 {

 return root.getData();

 }

 // if the data is less than the data at the current node

 // recursively search the left subtree, and return back

 // the result of that search

 if (root.getData().compareTo(data) > 0)

 {

 return find(root.getLeft(), data);

 }

 // otherwise, recursively search the right subtree, and

 // return back the result of that search

 else

 {

 return find(root.getRight(), data);

 }

 }

 /**

 * User method for removing an element from

 * the tree

 */

 public void delete(Comparable data)

 {

 // if data is a null reference, it cannot be compared, so

 // reject it

 if (null == data)

 {

 return;

 }

 // begin the recursion at the root

 root = delete(root, data);

 }

 /**

 * Recursive method which removes an element

 * from the tree. The tree must stay ordered after

 * the element has been removed

 */

 private BinaryNode delete(BinaryNode root, Comparable data)

 {

 // if root is null, we have run out of places to look,

 // so just return null back to its parent

 if (null == root)

 {

 return null;

 }

 // if the data matches the data at the current node, we

 // have found the item we want to delete

 if (data.compareTo(root.getData()) == 0)

 {

 // if the current node is a leaf, we don't need to

 // change anything else, so we can just return null

 // back to the parent

 if (root.isLeaf())

 {

 return null;

 }

 // if there is no left child, we can just return

 // the right child back to the parent

 if (root.getLeft() == null)

 {

 return root.getRight();

 }

 // if there is no right child, we can just return

 // the left child back to the parent

 if (root.getRight() == null)

 {

 return root.getLeft();

 }

 // get the data of the rightmost node in the left

 // subtree

 Comparable replacementData = getRightmost(root.getLeft());

 // create a new node with the data we just obtained, the

 // left subtree with that data removed, and the same right

 // subtree, and return that back to the parent

 return new BinaryNode(replacementData,

 delete(root.getLeft(), replacementData),

 root.getRight());

 }

 // if the data is less than the data at the root, recursively

 // delete from the left subtree, reset the left of the current

 // node to be whatever tree is created, and then return the

 // current node back to its parent

 else if (data.compareTo(root.getData()) < 0)

 {

 root.setLeft(delete(root.getLeft(), data));

 return root;

 }

 // otherwise, recursively delete from the right subtree, reset

 // the right of the current node to be whatever tree is created,

 // and then return the current node back to its parent

 else

 {

 root.setRight(delete(root.getRight(), data));

 return root;

 }

 }

 /*

 * Helper method for deleting an element from the tree

 *

 * Returns the leftmost node starting from bn

 */

 private Comparable getRightmost(BinaryNode root)

 {

 // if the tree is empty, there is no rightmost node, so

 // return null

 if (root == null)

 {

 return null;

 }

 // if there is no right child, then this node must be the

 // rightmost node, so return its data

 if (root.getRight() == null)

 {

 return root.getData();

 }

 // otherwise, recursively move to the right, and return

 // whatever it returns

 else

 {

 return getRightmost(root.getRight());

 }

 }

 /**

 * User method for an in-order traversal of

 * the tree

 */

 public void printInOrder()

 {

 // if the root is null, output that the entire tree is empty

 if (null == root)

 {

 System.out.println("Tree is empty");

 }

 // otherwise, begin the recursion at the root

 else

 {

 printInOrder(root);

 }

 }

 /**

 * Recursive method which performs an in-order

 * traversal of the tree. It should display the

 * tree's contents on the console

 */

 private void printInOrder(BinaryNode root)

 {

 // if the current node is null, there is nothing to print,

 // so just return

 if (null == root)

 {

 return;

 }

 // print the left subtree

 printInOrder(root.getLeft());

 // print the data at the current node

 System.out.println(root.getData());

 // print the right subtree

 printInOrder(root.getRight());

 }

}

25

35

16

19

25

35

16

19

20

15

10

20

15

10

20

7

1

5

70

55

30

10

60

23

50

