Name:

15-111/200 Exam 2 (Sample)
Summer 2005
1. Under what circumstances would a Vector be preferable to an array as an indexed container?

2. Under what circumstances is a singly-linked list preferable to a doubly-linked list? Or, if you prefer, what operations are more time-or-space efficient on a singly-linked list than a doubly-linked list?

3. Consider the LinkedList shown below. Please write a sequence of lines of Java code that will remove the node named by “tail”. Please number each line of code. You do not need to write a generic method – just use Java to describe the deletion step-by-step.

4. Please illustrate each line of your answer above by redrawing the figure above. You may redraw it as many times as necessary. But, you can also save time by drawing multiple operations on the same figure, labeling each with line number of the code. Regardless, your drawing and labeling must be clear and communicative.
5. What benefit is offered by a tail reference in a singly-linked list? Please give an example of a canonical linked-list method for which it is useful.

6. Under what circumstances is a doubly-linked list a better choice than a singly linked list? Why? Please give one example of a canonical doubly-linked list method for which the additional link is useful.

7. If a queue were implemented using an ArrayList’s addTail() and removeHead() methods, what would be the big-O of the addTail? The removeHead()?

8. What is the big-O (emphasis: upper-bound) of a remove on a Hash table? What about its expected runtime?

9. Please write a recursive method as below. It should not make use neither the /-operator nor the %-operator.

public static final int modulus (int numerator, int denominator)
Directions for questions 10 and 11:
Attached to this exam are definitions for a LinkedList class, and the Node class used therein. Each of the next three questions asks you to implement one new method for this LinkedList. Although no LinkedList methods are shown in the attached skeleton, you should presume that it plays all of the usual linked list games. As a consequence, your implementation should maintain the list in a consistent and correct state. Additionally, error conditions and other events that prevent the methods from achieving their goals should be managed by throwing a new instance of the LinkedListException initialized with a meaningful error message, or a null or -1 return, as appropriate. We aren’t promising that there will be any reason to throw an exception in each or any question – we’re just offering this to you as an available mechanism.
10. Please implement the following method of the LinkedList class:

 /*

 * This list should insert all of the items from otherList into the LinkedList upon which

 * the method is called. Each of the two lists is sorted from least-to-greatest before this

 * method is called – do not be concerned abut the case of unsorted lists.

 *

 * After this method completes, otherList should remain unchanged and the mergedList

 * should be in sorted order.

 *

 * Hint: It will be easier to insert the nodes in order into the target list than to sort the

 * list after-the-fact.

 */

public void mergeSortedLists(LinkedList otherList)

throws LinkedListException

11. Please implement the following method of the LinkedList class:

 /*

 * This method should simply reverse the order of the Nodes within the list.

 * After this method returns, the list should contain exactly the same Nodes of

 * exactly the same data – but in the opposite order.

 */

public void reverseList()

throws LinkedListException

Attachment: The LinkedList class and the Node class

public class LinkedList

{

 public class LinkedListException extends Exception

 {

 public LinkedListException(String s)

 {

 super (s);

 }

 }

 private Node head;

 private Node tail;

 private Node index;

 /*

 * Constructor. By default, set all the references

 * to null

 */

 public LinkedList()

 {

 head = tail = index = null;

 }

 /*

 * This class does have other methods, but since you can’t use them,

 * they are not included here.

 *

 * None-the-less, you must maintain index, head, tail, and the nodes

 * of the list in a meaningful state

 */

} /* End of class LinkedList */

public class Node

{

 private Comparable data;

 private Node next;

 /*

 * Constructor. Initializes instance variables

 * to specified values

 */

 public Node (Comparable data, Node next)

 {

 this.data = data;

 this.next = next;

 }

 /*

 * Constructor. Initializes data to the

 * specified value, and the next reference

 * to null

 */

 public Node (Comparable data)

 {

 this.data = data;

 this.next = null;

 }

 /*

 * Returns the data

 */

 public Comparable getData()

 {

 return data;

 }

 /*

 * Returns reference to next node

 */

 public Node getNext()

 {

 return next;

 }

 /*

 * Sets the next reference to the specified value

 */

 public void setNext(Node next)

 {

 this.next = next;

 }

} /* End of class Node */

tail

head

Next

Data

Next

Data

Next

Data

index

