
UNIT 4
Iteration: Sorting and Scalability

15110 Principles of Computing,

Carnegie Mellon University
1

Sorting

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
2

Insertion Sort

Given an array a of length n, n > 0.

1. Set i = 1.

2. While i is not equal to n, do the following:

 a. Insert a[i] into its correct position in a[0..i].

 b. Add 1 to i.

3. Return the array a which will now be sorted.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
3

Example

a = [53, 26, 76, 30, 14, 91, 68, 42]

i = 1

Insert a[1] into its correct position in a[0..1]
and then add 1 to i:

53 moves to the right,

26 is inserted back into the array

a = [26, 53, 76, 30, 14, 91, 68, 42]

i = 2

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
4

Example

a = [26, 53, 76, 30, 14, 91, 68, 42]

i = 2

Insert a[2] into its correct position in a[0..2]
and then add 1 to i:

76 is already in the correct place in a[0..2]

a = [26, 53, 76, 30, 14, 91, 68, 42]

i = 3

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
5

Example

a = [26, 53, 76, 30, 14, 91, 68, 42]

i = 3

Insert a[3] into its correct position in a[0..3]
and then add 1 to i:

76 moves to the right, then 53 moves to the right,

now 30 is inserted back into the array

a = [26, 30, 53, 76, 14, 91, 68, 42]

i = 4

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
6

Look Closer at Insertion Sort

Given an array a of length n, n > 0.

1. Set i = 1.

2. While i is not equal to n, do the following:

 Precondition for each iteration: a[0..i-1] is sorted

 a. Insert a[i] into its correct position in a[0..i].

 b. Add 1 to i.

 Postcondition for each iteration: a[0..i-1] is sorted

3. Return the array a which will now be sorted.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
7

Look Closer at Insertion Sort

Given an array a of length n, n > 0.

1. Set i = 1.

2. While i is not equal to n, do the following:

 Loop invariant: a[0..i-1] is sorted

 a. Insert a[i] into its correct position in a[0..i].

 b. Add 1 to i.

3. Return the array a which will now be sorted.

A loop invariant is a condition that is true at the
start and end of each iteration of a loop.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
8

Example (cont’d)

a = [26, 30, 53, 76, 14, 91, 68, 42]

i = 4

Insert a[4] into its correct position in a[0..4]
and then add 1 to i:

76 moves to the right, then 53 moves to the right,

then 30 moves to the right, then 26 moves to the right,

now 14 is inserted back into the array

a = [14, 26, 30, 53, 76, 91, 68, 42]

i = 5

 15110 Principles of Computing,

Carnegie Mellon University - CORTINA
9

Example

a = [14, 26, 30, 53, 76, 91, 68, 42]

i = 5

Insert a[5] into its correct position in a[0..5]
and then add 1 to i:

91 is already in its correct position

a = [14, 26, 30, 53, 76, 91, 68, 42]

i = 6

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
10

Example

a = [14, 26, 30, 53, 76, 91, 68, 42]

i = 6

Insert a[6] into its correct position in a[0..6]
and then add 1 to i:

91 moves to the right,

76 moves to the right,

now 68 is inserted back into the array

a = [14, 26, 30, 53, 68, 76, 91, 42]

i = 7

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
11

Example

a = [14, 26, 30, 53, 68, 76, 91, 42]

i = 7

Insert a[7] into its correct position in a[0..7]
and then add 1 to i:

91 moves to the right, then 76 moves to the right,

then 68 moves to the right, then 53 moves to the right,

then 42 is inserted back into the array

a = [14, 26, 30, 42, 53, 68, 76, 91]

i = 8

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
12

Example

a = [14, 26, 30, 42, 53, 68, 76, 91]

i = 8

The array is sorted.

But how do we know that the algorithm always
sorts correctly?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
13

Reasoning with the Loop Invariant

The loop invariant is true at the end of each
iteration, including the last iteration. After the
last iteration, when we go to step 3:

 a[0..i-1] is sorted AND i is equal to n

These 2 conditions imply that a[0..n-1] is sorted,
but this range covers the entire array, so the
array must always be sorted when we return our
final answer!

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
14

Insertion Sort in Ruby

def isort(list)

 a = list.clone

 i = 1

 while i != a.length do

 move_left(a, i)

 i = i + 1

 end

 return a

end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
15

insert a[i] into a[0..i]

in its correct sorted

position

Moving left

To move the element x at index i “left” to its correct
position, start at position i-1, and search left until we
find the first element that is less than x.

Then insert x back into the array to the right of the first
element that is less than x when you searched from
right to left in the sorted part of the array.

 (The insert operation does not overwrite. Think of it
as “squeezing into the array”.)

Can you think of a special case for the step above?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
16

Moving left: examples

Insert 68:

a = [14, 26, 30, 53, 76, 91, 68, 42]

Searching from right to left starting with 91, the first element less than 68 is 53.

Insert 68 to the right of 53.

Insert 76:

a = [26, 53, 76, 30, 14, 91, 68, 42]

Searching from right to left starting with 53, the first element less than 76 is 53.
Insert 76 to the right of 53 (where it was before).

Insert 14: SPECIAL CASE

a = [26, 30, 53, 76, 14, 91, 68, 42]

Searching from right to left starting with 76, all elements left of 14 are greater
than 14. Insert 14 into the position 0.

 15110 Principles of Computing,

Carnegie Mellon University - CORTINA
17

The move_left algorithm

Given an array a of length n, n > 0 and a value at

index i to be “moved left” in the array.

1. Remove a[i] from the array and store in x.

2. Set j = i-1.

3. While j >= 0 and a[j] > x, do the following:

 a. Subtract 1 from j.

4. Reinsert x into position a[j+1].

How is the special case handled here?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
18

move_left in Ruby

def move_left(a, i)

 x = a.slice!(i)

 j = i-1

 while j >= 0 and a[j] > x do

 j = j – 1

 end

 a.insert(j+1, x)

end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
19

remove the item at

position i in array a

and store it in x

insert x at position

j+1 of array a, shifting

all elements from j+1

and beyond over one

position

logical operator AND:

both conditions must be true

for the loop to continue

