)

—h"*-‘ﬂ’_’."*:““
PR BL S S BR B

RGN N EN G PR SR

AQ‘OAQN-«_.\Q.: «0.0 = 3=

.0‘0‘0".*’?;«%@0‘
N '~-§‘Qr '"-».Qrfm’.’fm

UNIT 4
Iteration: Sorting and Scalability

15110 Principles of Computing,
Carnegie Mellon University

Sorting

———
Sort by Sort by: | Best Match [+]
. Time: ending sconest
IDESCRIPTIC‘N ;I ¢ Ascending I Time: newly listed
£ Descending Price + P&P: lowest first
Then by Price + P&P: highest first
I ;I i* pscendin Price: lowest first
— Price: highest first
Then b ‘Name Artist EM | : na—sres? first
*| | pig Your Grave Modest Mouse =~ W:12 0 i ”5""3:“
[CL| s usegd first
I) Ostriches & Chirping Elliott Smith 0:33 | LR
) Interlude (Milo) Modest Mouse = 0:58 |
My st g ‘A We've Got a File On... Blur 1:02 | Y —
FRCLLEET] e : am
(* Hes) Fewer Words Badly Drawn ... 1:13 | ougliuy
E Life's Incredible Ag... Michael Giacc... 1:24 Search results for amd
optior{ [30 Century Man Scott Walker 1:26 | About 83,600 resuls
’E Lava In the Afterno... Michael Giacc... 1:29
) The Chase Stephen Trask 1:31 | Resuitiype: Sort by:
@ The Way | Feel Inside The Zombies 1:34 C:Leos
H Mr. Huph Will See ... | Michael Giacc... 1:35 | Channels View count
= Playlist Rat
%) Don't Ask Me I'm O... BadlyDrawn .. 1:36 4 - =
T Let Me Tell You Ab... Mark Mothers... 1:38 .Y Lo

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Insertion Sort

Given an array a of length n, n > 0.
1. Seti=1.
2. Whileiis not equal to n, do the following:

a. Insert ali] into its correct position in a[0..i].
b.Add 1to .

3. Return the array a which will now be sorted.

Example

a = [53, 26, 76, 30, 14, 91, 68, 42]
i = 1
Insert a[1] into its correct position in a[0..1]
and then add 1 to i:
53 moves to the right,
26 is inserted back into the array
a = [26, 53, 76, 30, 14, 91, 68, 42]
i = 2

Example

a = [26, 53, 76, 30, 14, 91, 68, 42]
i = 2
Insert a[2] into its correct position in a[0..2]
and then add 1 to i:
76 is already in the correct place in a[0..2]
a = [26, 53, 76, 30, 14, 91, 68, 42]

1= 3

Example

a = [26, 53, 76, 30, 14, 91, 68, 42]
i= 3
Insert a[3] into its correct position in a[0..3]

and then add 1 to i:
76 moves to the right, then 53 moves to the right,
now 30 is inserted back into the array
a = [26, 30, 53, 76, 14, 91, 68, 42]
i = 4

Look Closer at Insertion Sort

Given an array a of length n, n > 0.

1. Seti=1.

2. Whileiis not equal to n, do the following:
Precondition for each iteration: a[0..i-1] is sorted
a. Insert a[i] into its correct position in a[O0..i].
b.Add 1toi.
Postcondition for each iteration: a[0..i-1] is sorted

3. Return the array a which will now be sorted.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Look Closer at Insertion Sort

Given an array a of length n, n > 0.

1. Seti=1.

2. Whileiis not equal to n, do the following:
Loop invariant: a[0..i-1] is sorted
a. Insert a[i] into its correct position in a[O0..i].
b.Add 1to.

3. Return the array a which will now be sorted.

A loop invariant is a condition that is true at the
start and end of each iteration of a loop.

Example (cont’d)

a = [26, 30, 53, 76, 14, 91, 68, 42]
i = 4
Insert a[4] into its correct position in a[0..4]
and then add 1 to i:
76 moves to the right, then 53 moves to the right,
then 30 moves to the right, then 26 moves to the right,
now 14 is inserted back into the array
a = [14, 26, 30, 53, 76, 91, 68, 42]

1 = 5

Example

a = [14, 26, 30, 53, 76, 91, 68,

i= 5

Insert a[5] into its correct position in a[0..5]
and then add 1 to i:

91 is already in its correct position

a = [14, 26, 30, 53, 76, 91, 68,

i= 6

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

42 1]

42]

10

Example

a = [14, 26, 30, 53, 76, 91, 68, 42]
i = 6
Insert a[6] into its correct position in a[0..6]

and thenadd 1toi:

91 moves to the right,

76 moves to the right,

now 68 is inserted back into the array

a = [14, 26, 30, 53, 68, 76, 91, 42]
i= 7

15110 Principles of Computing,

Carnegie Mellon University - CORTINA H

Example

a = [14, 26, 30, 53, 68, 76, 91, 42]
i = 7
Insert a[7] into its correct position in a[0..7]

and then add 1 to i:
91 moves to the right, then 76 moves to the right,
then 68 moves to the right, then 53 moves to the right,
then 42 is inserted back into the array
a = [14, 26, 30, 42, 53, 68, 76, 91]
i =

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 12

Example

[14, 26, 30, 42, 53, 68, 76, 91]
= 8

Hoo
|

The array is sorted.

But how do we know that the algorithm always
sorts correctly?

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

13

Reasoning with the Loop Invariant

The loop invariant is true at the end of each
iteration, including the last iteration. After the
last iteration, when we go to step 3:

al0..i-1] is sorted AND i is equal to n

These 2 conditions imply that a[0..n-1] is sorted,
but this range covers the entire array, so the

array must always be sorted when we return our
final answer!

Insertion Sort in Ruby

def isort(list)
a = list.clone
i=1
while i !'= a.length do

_ Insert afi] into afo..1]
move left(a, i) €—— jnits correct sorted

i =1i+4+1 position
end
return a

end

Moving left

To move the element x at index i “left” to its correct
position, start at position i-1, and search left until we
find the first element that is less than x.

Then insert x back into the array to the right of the first
element that is less than x when you searched from
right to left in the sorted part of the array.

(The insert operation does not overwrite. Think of it
as “squeezing into the array”.)

Can you think of a special case for the step above?

Moving left: examples

Insert 68: /\

a = [14, 26, 30, 53, 76, 91, 68, 42]
Searching from right to left starting with 91, the first element less than 68 is 53.
Insert 68 to the right of 53.
Insert 76:
a = [26, 53, 76, 30, 14, 91, 68, 42]
Searching from right to left starting with 53, the first element less than 76 is 53.
Insert 76 to the right of 53 (where it was before).
Insert 14: SPECIAL CASE
—
a = [26, 30, 53, 76, 14, 91, 68, 42]

Searching from right to left starting with 76, all elements left of 14 are greater
than 14. Insert 14 into the position 0.

Themove left algorithm

Given an array a of length n, n > 0 and a value at
index i to be “moved left” in the array.
1. Remove ali] from the array and store in x.
2. Setj=i-1.
3. While j>=0 and a[j] > x, do the following:
a. Subtract 1 fromj.
4. Reinsert x into position a[j+1].

How is the special case handled here?

move leftin Ruby

def move left(a, 1i)
- _ _ remove the item at
X = a.slice! (1) <—— positioniinarraya

. . and store it in X
J = 1i-1
while j >= 0 and a[]j] > x do
j =3 -1 logical operator AND:
both conditions must be true
end for the loop to continue

a.insert(j+1, xX) <—— insertxat position
j+1 of array a, shifting
end all elements from j+1
and beyond over one
position

