
UNIT 2B
An Introduction to Programming

15110 Principles of Computing,

Carnegie Mellon University
1

for Loop

for loop_variable in start .. end do

loop body

end

start and end are integers.

For the first iteration, loop_variable is set to start.

For each subsequent iteration, the loop_variable
increases by 1.

In the last iteration, loop_variable is equal to end.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
2

for Loop

for loop_variable in start .. end do
loop body

end

The loop body is one or more instructions that you
want to repeat. (We usually indent the body for
readability.)

If start ≤ end, the for loop repeats the
loop body end-start+1 times.

If start > end, the entire loop is skipped.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
3

for Loop Example

for i in 1..5 do

 print "hello world\n"
end

hello world

hello world

hello world

hello world

hello world

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
4

for Loop Example

for i in 1..5 do

 print i

 print "\n"
end

1

2

3

4

5

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
5

for Loop Example

for i in 1..5 do

 print i

end

12345

for i in 1..5 do

 print i

 print " "

end

1 2 3 4 5

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
6

for Loop Example

for i in 1..10 do

 print i*2

 print " "

end

2 4 6 8 10 12 14 16 18 20

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
7

Danger!

for i in 1..5 do

 print i

 print " "

 i = 10

end

1 2 3 4 5

for i in 1..5 do

 i = 10

 print i

 print " "

end

10 10 10 10 10

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
8

If you modify the loop variable
inside of the for loop, the loop

will reset the loop variable to its

next expected value in the next

iteration.

Programming suggestion:

Do NOT modify the loop
variable inside a for loop.

Assignment Statements

An assignment statement has two parts:
 variable = expression
The expression on the right side of the equals is

evaluated and the result is stored in the variable
shown on the left side of the equals (overwriting the
previous contents of that variable).

 x y

x = 150 150 ?

y = x * 10 150 1500

y = y + 1 150 1501

x = x + y 1651 1501

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
9

A function using a for loop

def sum()

 # sums the first 5 positive integers

 sum = 0

 for i in 1..5 do

 sum = sum + i

 end

 return sum

end

sum()

=> 15

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
10

i sum

? 0

1 1

2 3

3 6

4 10

5 15

Generalizing our solution

def sum(n)

 # sums the first n positive integers

 sum = 0

 for i in 1..n do

 sum = sum + i

 end

 return sum

end

sum(6) => 21

sum(100) => 5050

sum(15110) => 114163605

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
11

An epidemic

def compute_sick(n)

 # computes total sick after n days

 newly_sick = 1

 total_sick = 1

 for day in 2..n do

 # each iteration represents one day

 newly_sick = newly_sick * 2

 total_sick = total_sick + newly_sick

 end

 return total_sick

end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
12

Each newly infected person
infects 2 people the next day.

An epidemic (cont’d)

compute_sick(1) => 1 compute_sick(17) => 131071

compute_sick(2) => 3 compute_sick(18) => 262143

compute_sick(3) => 7 compute_sick(19) => 524287

compute_sick(4) => 15 compute_sick(20) => 1048575

compute_sick(5) => 31 compute_sick(21) => 2097151

compute_sick(6) => 63

compute_sick(7) => 127

compute_sick(8) => 255

compute_sick(9) => 511

compute_sick(10) => 1023

compute_sick(11) => 2047

compute_sick(12) => 4095

compute_sick(13) => 8191

compute_sick(14) => 16383

compute_sick(15) => 32767

compute_sick(16) => 65535

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
13

In just three weeks, over
2 million people are sick!
(This is what Blown To Bits
means by exponential growth.
We will see important
computational problems that
get exponentially “harder” as
the problems gets bigger.)

Countdown!

def countdown()

 for i in 1..10 do

 print 11-i

 print " "

 sleep 1 # pauses for 1 sec.

 end

end

countdown()

=> 10 9 8 7 6 5 4 3 2 1

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
14

Why can’t we just use 10..1
here and print i instead?

