)

—h"*-‘ﬂ’_’."*:““
PR BL S S BR B

RGN N EN G PR SR

AQ‘OAQN-«_.\Q.: «0.0 = 3=

.0‘0‘0".*’?;«%@0‘
N '~-§‘Qr '"-».Qrfm’.’fm

UNIT 2A
An Introduction to Programming

15110 Principles of Computing,
Carnegie Mellon University

Arithmetic Expressions

Mathematical Operators

+ Addition
- Subtraction
* Multiplication

Order of Precedence
{**} then {* / %}

/
%

* %k

Division
Modulo (remainder)
Exponentiation

then {+ -}

Use parentheses to force alternate precedence

5*6+725*(6+7)

Left associativity except for **

2+3+4=(2+3)+4

Integers
4

Data Types

15110

—-53

Floating Point Numbers
0.3333333333333333

4.0

-0.38

7.34e+014

Strings
"hello

Booleans
TLrue

" "A"

false

LA

LA

0

LA A

"'7up ! LA

Variables

 All variable names must start with a lowercase
letter.

 The remainder of the variable name (if any) can
consist of any combination of uppercase letters,
lowercase letters, digits and underscores ().

e Variables are case sensitive.
Example: Value is not the same as value.

Assignment Statements

 The lefthand side must contain a single variable.

* The righthand side can be any valid Ruby expression:
* A numerical, string or boolean value.

x = 45.2
* A numerical expression.
y = x * 15

A method (function) call.
z = sqgrt (15100)

* Any combination of these:
rootl = -b + sqgrt(b**2 - 4*a*c)/ (2 * a)

Methods

* Methods are used to capture small algorithms
that might be repeated with different initial
conditions.

def methodname (parameterlist)
instructions
end

e def and end are reserved words and cannot be
used as variable names.

Methods (cont’d)

* The name of a method follows the same rules as
names for variables.

 The parameter list can contain 1 or more

variables that represent data to be used in the
method’s computation.

A method can have O parameters.
def hello world()

print "Hello World!\n"

end (\n is a newline character)

countertop.rb

param eter
def compute_area(sidef’/////’

square = si1de * side
triangle = 0.5 * side / 2 * side / 2
area = square - triliangle

return area
end

To run the function in 1 rb:

load “countertop.rb" argument
compute area (109% (run function with side = 109)

Methods (cont’d)

To run a method, we say we “call” the method.

A method can return either one answer or no
answer to its “caller”.

The hello world function does not return

anything to its caller. It simply prints something
on the screen.

The compute area function does return its
result to its caller so it can use the value in

another computation:
compute area(109) + compute area (78)

Methods (cont’d)

* Suppose we write compute area this way:
def compute area(side)

square = sil1de * side
triangle = 0.5 * side/2 * side/?2
area = square - trilangle

print area
end

* Now this computation does not work since each

function call prints but returns nothing:
compute area(109) + compute area (78)

escape.rb

(a function with two parameters)

def compute ev (mass, radiusl//racmnmem:
computes escape velocity
univ grav = 6.07e-011
return sqgrt (2*univ grav*mass/radius)
end

To run the function for Earth in 1 rb:

load "escape.rb"
compute ev (5.9742e+024, ©378.1)

Using predefined modules

e Math is a predefined module of methods that we

can use without writing their implementations.
Math.sqgrt (16)

Math: :PI

Math.sin (Math::PI / 2)

* |f we are going to use this module a lot, we can
include it first and then leave off the module

name when we call a function.
include Math

sqrt (16)

sin(PI / 2)

