
UNIT 4C
Iteration: Scalability & Big O

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
1

Efficiency

• A computer program should be totally correct, but it
should also
– execute as quickly as possible (time-efficiency)

– use memory wisely (storage-efficiency)

• How do we compare programs (or algorithms in
general) with respect to execution time?
– various computers run at different speeds due to different

processors

– compilers optimize code before execution

– the same algorithm can be written differently depending
on the programming paradigm

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
2

Counting Operations

• We measure time efficiency by counting the
number of operations performed by the
algorithm.

• But what is an operation?

– assignment statements

– comparisons

– return statements

– ...

 15110 Principles of Computing,

Carnegie Mellon University - CORTINA
3

Linear Search: Worst Case

let n = the length of list.

def search(list, key)

 index = 0 1

 while index < list.length do n+1

 if list[index] == key then n

 return index

 end

 index = index + 1 n

 end

 return nil 1

end Total: 3n+3

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
4

Linear Search: Best Case

let n = the length of list.

def search(list, key)

 index = 0 1

 while index < list.length do 1

 if list[index] == key then 1

 return index 1

 end

 index = index + 1

 end

 return nil

end Total: 4

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
5

Counting Operations

• How do we know that each operation we count
takes the same amount of time? (We don’t.)

• So generally, we look at the process more
abstractly and count whatever operation
depends on the amount or size of the data
we’re processing.

• For linear search, we would count the number
of times we compare elements in the array to
the key.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
6

Linear Search: Worst Case Simplified

let n = the length of list.

def search(list, key)

 index = 0

 while index < list.length do

 if list[index] == key then n

 return index

 end

 index = index + 1

 end

 return nil

end Total: n

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
7

Linear Search: Best Case Simplified

let n = the length of list.

def search(list, key)

 index = 0

 while index < list.length do

 if list[index] == key then 1

 return index

 end

 index = index + 1

 end

 return nil

end Total: 1

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
8

Order of Complexity

• For very large n, we express the number of operations
as the (time) order of complexity.

• Order of complexity is often expressed using
Big-O notation:

Number of operations Order of Complexity

n O(n)

3n+3 O(n)

2n+8 O(n)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
9

Usually doesn't

matter what the

constants are...

we are only

concerned about

the highest power

of n.

O(n) (“Linear”)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
10

n

(amount of data)

Number of

Operations

n 3n+3

2n + 8

O(n)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
11

n

(amount of data)

Number of

Operations
n

10 20 30

10

20

30 For a linear algorithm,

if you double the amount

of data, the amount of work

you do doubles

(approximately).

O(1) (“Constant-Time”)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
12

n

(amount of data)

Number of

Operations

4

4 = O(1)

1
1 = O(1)

For a constant-time algorithm,

if you double the amount

of data, the amount of work

you do stays the same.

Linear Search

• Worst Case: O(n)

• Best Case: O(1)

• Average Case: ?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
13

Insertion Sort: Worst Case

let n = the length of list.

def isort(list)

 a = list.clone n

 i = 1

 while i != a.length do

 move_left(a, i) n-1

 i = i + 1

 end

 return a

end

 15110 Principles of Computing,

Carnegie Mellon University - CORTINA
14

Insertion Sort: Worst Case

let n = the length of list.

def move_left(a, i)

 x = a.slice!(i)

 j = i-1

 while j >= 0 && a[j] > x do i+1

 j = j – 1

 end

 a.insert(j+1, x)

end

but how long do slice! and insert take?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
15

move_left (alternate version)

let n = the length of list.

def move_left(a, i)

 x = a[i]

 j = i-1

 while j >= 0 && a[j] > x do i+1

 a[j+1] = a[j]

 j = j – 1

 end

 a[j+1] = x

end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
16

Insertion Sort: Worst Case

• So the total number of operations is
n + (n-1 move_left’s)

• But each move_left performs i+1 operations,
where i varies from 1 to n-1:

• n-1 move_left’s = 2 + 3 + 4 + ... + n
• Since 1 + 2 + ... + n = n(n+1)/2,

n-1 move_left’s = n(n+1)/2 – 1
• The total number of operations is:

n + n(n+1)/2 – 1 = n + n2/2 + n/2 – 1 = n2/2 + 3n/2 – 1

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
17

Order of Complexity

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
18

Number of operations Order of Complexity

n2 O(n2)

n2/2 + 3n/2 - 1 O(n2)

2n2 + 7 O(n2)

Usually doesn't

matter what the

constants are...

we are only

concerned about

the highest power

of n.

O(n2) (“Quadratic”)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
19

n

(amount of data)

Number of

Operations

n2/2 + 3n/2 – 1 2n2 + 7
n2

O(n2)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
20

N

(amount of data)

Number of

Operations

10 20 30

100

400

900

N2

For a quadratic algorithm,

if you double the amount

of data, the amount of work

you do quadruples

(approximately).

Insertion Sort

• Worst Case: O(n2)

• Best Case: ?

We’ll compare these algorithms with others soon to see how

scalable they really are based on their order of complexities.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
21

