) Y

RSSO R R R

.0.0.0.- R 2 ‘.0 = =

el AR

'’ ‘a'a's

UNIT 4C
Iteration: Scalability & Big O

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Efficiency

A computer program should be totally correct, but it
should also

— execute as quickly as possible (time-efficiency)

— use memory wisely (storage-efficiency)

How do we compare programs (or algorithms in
general) with respect to execution time?

— various computers run at different speeds due to different
processors

— compilers optimize code before execution

— the same algorithm can be written differently depending
on the programming paradigm

Counting Operations

We measure time efficiency by counting the
number of operations performed by the

algorithm.

But what is an operation?
assignment statements
comparisons

return statements

Linear Search: Worst Case

let n = the length of list.
def search(list, key)
index = 0 1
while index < list.length do n+l
if list[index] == key then n
return index
end
index = index + 1 n
end
return nil 1

end Total: 3n+3

Linear Search: Best Case

let n the length of list.
def search(list, key)

index = 0
while index < list.length do
if list[index] == key then
return index
end

index = index + 1

end
return nil
end Total:

e

Counting Operations

* How do we know that each operation we count
takes the same amount of time? (We don’t.)

* So generally, we look at the process more
abstractly and count whatever operation
depends on the amount or size of the data
we’re processing.

 For linear search, we would count the number
of times we compare elements in the array to
the key.

Linear Search: Worst Case Simplified

let n the length of list.
def search(list, key)

index = 0
while index < list.length do
if list[index] == key then n
return index
end

index = index + 1

end
return nil
end Total: n

Linear Search: Best Case Simplified

let n the length of list.
def search(list, key)

index = 0
while index < list.length do
if list[index] == key then 1
return index
end

index = index + 1

end
return nil
end Total: 1

Order of Complexity

For very large n, we express the number of operations
as the (time) order of complexity.

Order of complexity is often expressed using
Big-O notation:

Number of operations Order of Complexity

N O(n) Usually doesn't
matter what the

3n+3 O(n) constants are...

IN+8 O(n) we are only

concerned about
the highest power
of n.

Number of
Operations

O(n) (“Linear”)

2n + 8

3n+3 n

>

n
(amount of data)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

10

O(n)

Number of A N

Operations
For a linear algorithm,

30
if you double the amount
of data, the amount of work
you do doubles

20 (approximately).

10

>
10 20 30 n

(amount of data)

15110 Principles of Computing, 11
Carnegie Mellon University - CORTINA

O(1) (“Constant-Time”)

For a constant-time algorithm,
if you double the amount

of data, the amount of work
you do stays the same.

Number of a
Operations

4 =0(1)

1=0(1)

>

n
(amount of data)

15110 Principles of Computing, 12
Carnegie Mellon University - CORTINA

Linear Search

* Worst Case: O(n)
* Best Case: O(1)

* Average Case: ?

Insertion Sort: Worst Case

let n = the length of list.
def isort(list)
a = list.clone n
i=1
while i '= a.length do
move left(a, i) n-1
i=1i+1

end
return a

end

Insertion Sort: Worst Case

let n the length of list.
def move left(a, i)

X = a.slice! (i)

j = 1-1

while j >= 0 && a[j] > x do i+l
J=3-1

end

a.insert (j+1, x)
end

but how long do slice! and insert take?

move left (alternate version)

let n = the length of list.
def move left(a, i)
x = a[i]
j = i-1
while j >= 0 && a[j] > x do i+l
a[j+l] = a[j]
j=3-1
end
a[j+l] = x

end

Insertion Sort: Worst Case

So the total number of operations is

n + (n-1 move_left’s)

But each move_left performs i+1 operations,
where i varies from 1 to n-1:

n-1 move left's=2+3+4+..+n
Sincel+2+..+n=n(n+l)/2,

n-1 move_left’s =n(n+1)/2 -1

The total number of operations is:
n+n(n+l)/2—-1=n+n?/2+n/2-1=n%/2+3n/2-1

Order of Complexity

Number of operations Order of Complexity

n2 O(n?)
n%/2 +3n/2 -1 O(n?)
2n2 +7 O(n?)

Usually doesn't
matter what the
constants are...
we are only
concerned about
the highest power
of n.

15110 Principles of Computing, 18
Carnegie Mellon University - CORTINA

Number of
Operations

O(n?) (“Quadratic”)

n2
N2 + 7 n%/2 +3n/2 -1

>

n
(amount of data)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

19

O(n?)

Number of a N2

Operations
For a quadratic algorithm,

900 if you double the amount
of data, the amount of work
you do quadruples
(approximately).

400

100 / X

10 20 30 N
(amount of data)

15110 Principles of Computing, 20
Carnegie Mellon University - CORTINA

Insertion Sort

* Worst Case: O(n?)

e Best Case: ?

We’ll compare these algorithms with others soon to see how
scalable they really are based on their order of complexities.

