
Notes from the Boards Board Notes Set 21 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

1

Libraries : Video
Video is a series of still images that are displayed consecutively
at some reasonable rate. The result is interpreted by our brains
as motion. Modern video is displayed at a rate of just a little
bit less than 30 images or frames per second.

Using Processing, we can model our work with video very
closely to the work we did with images in the previous set of
notes. For each frame or image in the video there is:
 a width variable
 a height variable
 a pixels array
We can get the pixel color values copied into the pixels array
with the loadPixels() function and we can send altered values
from the pixels array back to memory with the updatePixels()
function.

Everything we said about images applies to each frame in a
video file.

Shiffman presents a number of examples in Chapter 16 of the
book. His first examples work with a camera attached to your
computer. These examples have the following code in
common:
 import processing.video.*;

The video library is part of the download when you install
Processing on your computer. This just tells Processing that
you are going to use parts of the video library.

 Capture video;
This creates a reference to the Capture class that works with
the camera.

 video = new Capture(this, width, height, 15);
This assigns the reference video to communicate with the
camera. The arguments are:
this – this program
width – the width of the video image
height – the height of the video image
15 – the number of frames of videoper second.

Notes from the Boards Board Notes Set 21 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

2

 if(video.available())
{
 video.read();
}
The if uses the function available(). This function returns
true if there is video data ready to use.
Within the if, the read() function is called to copy the video
data from the camera into the computer’s memory.

At this point we can go to the code used in the previous set of
notes. We can call video.loadPixels(), search the data and alter
any values that we want to. We can then call video.updatePixels(
) to alter the computer’s memory and we can call image(video, .
. .) to display the altered video image.

The functions red(), green(), and blue() can be used to get the
values for these three colors from any element of the pixels
array. The values returned are floats.

Here is one un-altered frame from the camera on Jim’s office
computer.

Notes from the Boards Board Notes Set 21 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

3

Here is a piece of code that alters the image of Jim in his office
from color to gray:
import processing.video.*;

Capture video;

int x, y, dX, dY;

void setup()
{
 size(600, 600);
 video = new Capture
 (this, width, height, 30);
}

void draw()
{
 if(video.available())
 {
 video.read();
 }
 loadPixels();
 for(int i = 0;
 i < pixels.length; i++)
 {
 float r = red(video.pixels[i]);
 float g = green(video.pixels[i]);
 float b = blue(video.pixels[i]);
 float sum = r + g + b;
 float average = sum/3;
 video.pixels[i] = color(average) ;
 }
 updatePixels();
 image(video, 0, 0);
}

And here is the image this produces:

Notes from the Boards Board Notes Set 21 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

4

This code does the following:
1. check to see if there is any video to read
2. copy the information in memory to the pixels array in the

object referenced by video
3. traverses the pixels array from the zeroth element to the

last element.
- For each element, the red, green, and blue values are
extracted,
 - summed, and
 - averaged.
 - Then the average value is used to assign the pixels
 element a gray value instead of color.

4. Transfers the data in the altered pixels array back to the
computer’s memory

5. draws the video frame’s image in the window with the
altered data

In Shiffman’s examples, he uses a set of nested loops to traverse
the array:
 for(int x = 0; x < video.width; x++)
 {
 for(int y = 0; y < video.height; y++)
 {
 loc = x + y*video.width;
 fgColor = video.pixels[loc];
 bgColor = backgroundImage.pixels[loc];

 float r1 = red(fgColor);
 float g1 = green(fgColor);
 float b1 = blue(fgColor);
 float r2 = red(bgColor);
 float g2 = green(bgColor);
 float b2 = blue(bgColor);

 diff = dist(r1, g1, b1, r2, g2, b2);

 if (diff > threshold)
 {
 pixels[loc] = fgColor;
 }
 else
 {
 pixels[loc] = color(0, 255, 0);
 }
 } // end inner for loop
 } // end outer for loop

His code traverses the entire array in order of the pixels as they
appear on screen and not in a linear order .

