
Notes from the Boards Set BN19 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

1

The Class, String
There are five programs in the class code folder Set17. The first
one, String1 is discussed below. The folder StringInput shows
simple string input from the keyboard.

Processing is really Java. It is referred to as a “super set “ of
Java because it is all of Java and more. Much of the java
aspects are hidden from view by the Processing IDE. We will
look at some of the hidden stuff next class meeting.

The main organizing structure of Java – and Processing – is
the class. One main reason for using a class structure is simply
the size and complexity of the language. A way to consider
this is to think about a library. It is composed of books – lots
and lots of books. But, what if every book in the library was
pasted together into a single large book? That’s right – one
book. Think of the ramifications:

• only one person could check it out at a time
• it would be difficult to find something specific
• its shear size and weight would make it very cumbersome

and be difficult to work with in any way
This same list and more is one reason that Java is broken up
into smaller units or segments. These segments are called
classes. The class list in the Java API has over 2000 entries.

We have been programming inside a class since we wrote the
first program on day 1. We will look at this next time.

As a first look at a class, we will look at the String class of Java.
Here are the high points:

1. Anything inside quotation marks (“ “) is a String. Think
of a string of pearls, a string of beads, a string of
characters. Here are some examples of Strings:
 ““ the empty string
 “ “ the space as a string
 “hello world“ which is one of the most famous String

2. Strings are NOT arrays. They are references to pieces of
memory called objects or in this discussion, String objects.

Notes from the Boards Set BN19 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

2

3. The characters in a String object are indexed like arrays
beginning at zero (but they are not arrays).

4. There is a length field in the String object but it is private –
we cannot directly access it. To find the length of a String,
we must use the length() function.

5. The last character in a String has an index of length()-1

The processing API lists seven String functions (In Java,
functions have a different name – they are methods. sigh…
functions, methods, parameters, arguments, sigh again…).
that may be useful to you. These are used in the classcodeA
program . The JAVA API has over 2000 functions (methods)
listed for the class. All of these can be used by you in a
Processing program because Processing is really Java.

Here is a list of comparisons and contrasts between an array of
char and a String;
Category Array of char String
declaration char [] c; String s;
initialization char [] c = {'a', 'b'}; String s = "hello";
access println(c[0]); println(s.charAt(0));
Changing values c[0] = 'x'; Illegal for Strings
Size println(c.length); println(s.length());
Index of
beginning
character

println(c[0]); println(s.charAt(0));

Index of last
character

println(c[c.length - 1]); println(s.charAt(s.length() - 1));

Equality ==
compiles, runs, and does
not work properly

==
compiles, runs, and usually does not
work properly

if (s.equals(s1))
{

}
compiles, runs and works properly

One question that is asked is how can the toUpperCase() and
toLowerCase() functions be used. One way to use them is when
we are dealing with user input (discussed later in these notes).

Notes from the Boards Set BN19 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

3

If we ask the use to type either yes or no as a reply to a question
the user can type any of the following to correctly respond:
yes Yes YES yEs yeS YeS no No NO nO

Any of these are proper inputs. Yet we do not want to have to
type:
if (s1.equals("YES") ||
 s1.equals("yes") ||
 s1.equals("yES") ||
 s1.equals("yeS") ||
 s1.equals("YeS") ||
 s1.equals("yEs"))
 {
 . . .
 }
This is silly. What if we were asking for the capital of the state
of Florida? We can use the case changing functions to simplify
the code:
 if (s.toUpperCase().equals("YES"))
 {
 . . .
 }
The function toUpperCase() returns a new String and we can use
the equals() function with the returned String. This does look a
bit bizarre, but there is a simpler way to write this code:
 String temp = s.toUpperCase();
 if (temp.equals("YES"))
 {
 . . .
 }

Arrays of String References
We can build arrays of any type of data so we can build an
array of Strings. The syntax is the same:
 String [] labels = { "On", "Off", "In", "Out" };

Notes from the Boards Set BN19 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

4

String Input
We have used single character input for weeks. We have done
this in the keyPressed() function. The advantage of this is that
the program does not pause and wait for the input. If we have
no animation ongoing when we want input, a pause in the
action is fine. But, if there is animation occurring, a pause for
input is not good.

Processing provides no other direct way to get user input and
we do not want to explore Java’s ways of getting user input so
we will keep using the keyPressed() function to do our work.

Here is part of the code in A_BoardNotes that gets input from
the user:
Code Comments
void keyPressed()
{

if (keyCode == DELETE ||
 keyCode == BACKSPACE)

 {
 if (s.length() >0)
 {

 s = s.substring
 (0,
 s.length()-1);
 }
 }

If we assume the user might not
type things correctly and will want
to correct their input, we have to
account for the delete (Mac) or
backspace (Windows) keys. These
keys are CODED so we check the
keyCode value first.

If the user typed one of these
coded keys, we must first test the
String to insure it is not empty.
Our code will crash is we try to
delete a character from an empty
String.

We cannot alter a String so we
have to make an new String
without the last character. The
substring() function does this.
The details of the parameters are
discussed below.

Notes from the Boards Set BN19 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

5

 else
 {
 s = s + key;
 }
}

If the user did not type the coded
keys tested for above, this
assumes they typed a character
and a new String is made from the
old String and the new letter using
the concatenation operator +

The parameters for the call of the substring() function need some
explanation:
 s = s.substring (0, s.length()-1);

The last character in the String has an index of :
 s.length()-1
If we want a new String created that does not have the last
character, shouldn’t we use the following for the second
parameter:
 s = s.substring (0, s.length()-2);

This is one time that our logic fails us. When we specify a range
of values, there are many functions that do not include the
second value in the range. For example, if we call the random()
function like this:
 float f = random(10, 20);
we get values between:
 10.0 and 19.9999999
We do not get 20 in the range of returned values.

In fact when we draw a line like this:
 line(0, 0, 400, 400);
The line is drawn from pixel (0, 0) to pixel (399, 399).

In the parameter list for substring():
 s = s.substring (0, s.length()-1);
The new String that is returned has character from index 0 up
to BUT NOT INCLUDING the character at the index of the
second parameter.

