Notes from the Boards

Classes #3

These notes discuss the class code Set19. Yow should have that
code invthe Classl folder open as yow read thwough this.

Set BN18 Page

This third set of notes has two- goals:

1. correct awv intentional ervor invthe code presented invthe

previous two- sety of notes and class code
2. briefly summanrige the use of classes

First, the ervov. Fromthe previous set of class code, the code

below hays the evrovr mawked inv red

// Class Code Set 19
// Classes in Processing #1

Square s;

void setup()

{
size(600, 600);

s = new Square():
s.setup();

background(0):
}

void draw()
{
s.move();
s.draw();

}

class Square

{
// fields or variables
float x, y, edge, dX, dY:
color col;

void setup()
{
x = random(10, 500);
y = random(10, 500):
edge = random(50, 200):
dX = random(2, 10);
dY = random(2, 10);
col = color(random(255),
random(255),
random(255));
}

void move()

{

: .
void draw()

{

.
}

Jim used the setup() functiow so-the structure of this code would
parallel the code yow have beevnw writing since week #2.

However, this is not the “covrect” or “proper” way to- initioaldize
the variables inthe object. Here isthe “covrect” or “proper”
code:

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards

Set BN18 Page

// Class Code Set 17
// Classes in Processing #3

Square s;

void setup()

{
size(600, 600);

s = new Square():

background(0);

class Square

{
// fields or variables
float x, y, edge, dX, dY:
color col;

Square()

{
x = random(10, 500);
y = random(10, 500):
edge = random(50, 200):
dX = random(2, 10);

} dY = random(2, 10);
col = color(random(255),
void draw() random(255),
{ random(255));
s.move(); }
s.draw(); void move()
} {
}
void draw()
{
}
}
There are two- changes:

1. The call of thesetup() function for the Square reference; s

onthe left side iy gone

2. The furst line of the originalsetup() function onthe right
side invthe definitiow of the Square class has beew seriously

modified.

Thesetup() function definition has been replaced withv aSquare()
functiow definitiow - sovta’. . . The code is the same - only the
noune has beenw changed. If we look covefully at the Square()

definition, we see what looks like some ervors:
1. There is no-retuwrntype
2. The function has the saume naume as the class

3. Inthe left colwmn we see that it is called inv av very

different wovy.

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set BN18 Page 3

HOWEVER, this rung properly. Processing hands this code to-the
Jovaw compiler and we see the squoare moving around the
window.

So-what ig going on?

The code that defines Square() is different because Square() is v
special kind of function® called avconstructor. The constructor’s
purpose iy to- initialige the vawialbles to-their covrect stowting
values.

The rules for defining and wsing o constructor are’
1. there iy no-retuwrntype,
2. the naume of the constructor MUST be exactly the saume as
the name of the class, and
3. it cavonly be used after thenew operator

We cov use parameter/argument binding fov covstiructors just
as we use them for functions. Constructors hawe signatures just
like functions so- we cawv define mudtiple constructors as long as
they hawe different signatures.

Swmmawiging Classes and OOP

This whirlwind look at Classes is fowr from complete ivv either
concepty ov syntax. There iy much move. What yow have here is
enough to-get yow stowted with classes and to- use thesm inv your
remaining work. Here is o brief suummany of some of the
importont ideas in these last few days of work.

The ideav of Object Oriented Programuming (OOP) is to-capture;
or encapsulate; or code everything we need to-represent or
model something irnvone programming entity that we call v

! Some authors insist that the constructor is not a function. It is a constructor. They also
insist that constructors are not called. So the line in the code in the left box:

s = new Square():
is not a function call (according to them).

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set BN18 Page 4

class. Doing this is called Object Oriented Progrowmming ov
OOP. Inthese exaumples we used the classes Square and Circle.

Depending ow the problem we must solve; we could define av
class to-help us:. Suppose we were writing a new cowd goune: Wes
could define o class for one playing Card . Thesw we could
define o class for aDeck that would hawve awv awvay of references
to-52 Card objects: EachCard object would hawe ity vawiables
assigned the values of one pawticudow cowd.

Or we could, write awnv adventure gome where the ploavyer gathers
“Stuwft” to-help her/him. This stuff could be magic potions,
weapons; spells, armor, etc. We could use classes to-help us write
the code. We might define a Stuff class as v pawrent class and
use inheritonce to- define the individual stuff the plavyer coulds
collect.

Done well; Object Oriented Programming offers some
advantages over av single large progrowm withv moany functions:
« o method for brmbm\g/ﬂwproblwu into- sulb-problems

Since v good class breakdownw comv allow for some of the classes
to-be coded and tested separately from the rest of the code;
development cawv proceed, invparallel for much of the work.

To- use classes ivv our code we need different “kinds” of files:
« aclient” file that “hires” the class to- do- some work.
* o “server” flle that provides the needed service. This iy the
class that we have just wovked withv. It has the variables
and functions to-do- what is required.

Invour work over the last few days; the client was the

same the file we have been writing for 11 weeks: It has the
setup() and draw() functions as well as oy other functions need.
These files declawed references to-the classes (servers), newed
them, and called their functions.

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set BN18 Page 5

The classes were the server files. They were the classes that
defined the Square, Circle, and Shape.

Classes hawve two-basis types of stuff: vowiables and functions:
These are ofterv givew different noumes:
o variables canv be called instonce vawiables , fields, and
state
s functions are oftenw called methods, member functions,
oand behowior

Thesetup() functiow is replaced withv avconstructor that hos the
following rules for ity coding and use:
1. There is no retuwrntype
2. The noumne of the constructor MUST be exactly the saume as
the naume of the class
3. It canwvonly be used after thenew operator

Classes define what Processing must do-to- build and use objects
of the clauss.

Inorder to-actually use the class arv object of the class must be
buwilt. This ideav is very similawr to- building owv awvoyy. In bothv
cases we stowt withv references but bothv references arvenull;

int []a:

Square s;

The next task is to- create the actual object that has the dato we
need. Againy this is similowr to-how we create the actual awray:
a=newint[5];

s = new Square();

Whewn these two- lines of code awe executed;, we cowv use this
terminology to-describe what has happened:
“s references a Square object”
Just as we savy,
“a references an array of int “

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set BN18 Page 6

Inovrder to- use the dato inthe object ov call ity functions from
the client, we use the dot or period syntax that shows possession
s.move();
if (s.x > width) . ..

If we hawe two- or move very similaw classes to- define, we conv
take advantage of inheritance. To- do-this, we define a pawrent
cdass that has the dato and functions that are common to-the
similow classes. Then we canv code the similow classs as sl
classes ov extended classes so-they inherit the common “stuff .
Inthe individual sub-classes we define only those functions
that are different from the other sulb-classes.

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

