
Notes from the Boards Board Notes Set 17 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

1

Classes #2
These notes discuss the class code Set18. You should have that
code in the Class1 folder open as you read through this.

In our last exciting episode of 15-102 we left our hero on a
dark and stormy night… er… sorry .. wrong story… We were
exploring classes and we discussed this code:
// Class Code Set18
// Classes in Processing #1

Square s;

void setup()
{
 size(600, 600);

 s = new Square();
 s.setup();

 background(0);
}

void draw()
{
 s.move();
 s.draw();
}

class Square
{
 // fields or variables
 float x, y, edge, dX, dY;
 color col;

 void setup()
 {
 x = random(10, 500);
 y = random(10, 500);
 edge = random(50, 200);
 dX = random(2, 10);
 dY = random(2, 10);
 col = color(random(255),
 random(255),
 random(255));
 }
 void move()
 {
 x += dX;
 if (x + edge > width || x < 0)
 {
 dX = -dX ;
 }
 y += dY;
 if (y + edge > height || y < 0)
 {
 dY = -dY ;
 }
 }
 void draw()
 {
 fill(col);
 rect(x, y, edge, edge);
 }
}

Notes from the Boards Board Notes Set 17 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

2

If you are not comfortable with this code, please go back to the
board notes Set 16 The idea here is to capture, or encapsulate,
or code everything we need to draw a square within a single
programming entity that we call a class. In this example the
class is named, Square. Now we can declare references to objects
of this Square class. This is the main idea of Object Oriented
Programming. Let’s pursue this idea and create a Circle class.

class Circle
{
 // fields (variables)
 float x, y, diameter, dX, dY;
 color col;
 // functions
 void setup()
 {
 x = random(10, width/3);
 y = random(10, height/3);
 diameter= random(50, width/10);
 dX = random(2, 10);
 dY = random(2, 10);
 col = color(random(255), random(255), random(255));
 }
 void move()
 {
 x += dX;
 if (x + diameter> width || x < 0)
 {
 dX = -dX ;
 }

 y += dY;
 if (y + diameter> height || y < 0)
 {
 dY = -dY ;
 }
 }
 void draw()
 {
 fill(col);
 ellipse(x, y, diameter, diameter);
 }
}

This will work just like the Square class… but … wait a mo…

Notes from the Boards Board Notes Set 17 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

3

Let’s look at these two classes side-by-side:
class Square
{
 // fields or variables
 float x, y, edge, dX, dY;
 color col;

 void setup()
 {
 x = random(10, 500);
 y = random(10, 500);
 edge = random(50, 200);
 dX = random(2, 10);
 dY = random(2, 10);
 col = color(random(255),
 random(255),
 random(255));
 }
 void move()
 {
 x += dX;
 if (x + edge > width || x < 0)
 {
 dX = -dX ;
 }
 y += dY;
 if (y + edge > height || y < 0)
 {
 dY = -dY ;
 }
 }
 void draw()
 {
 fill(col);
 rect(x, y, edge, edge);
 }
}

class Circle
{
 // fields (variables)
 float x, y, diameter, dX, dY;
 color col;

 void setup()
 {
 x = random(10, width/3);
 y = random(10, height/3);
 diameter= random(50, width/10);
 dX = random(2, 10);
 dY = random(2, 10);
 col = color(random(255),
 random(255),
 random(255));
 }
 void move()
 {
 x += dX;
 if (x + diameter> width || x < 0)
 {
 dX = -dX ;
 }
 y += dY;
 if (y + diameter> height || y < 0)
 {
 dY = -dY ;
 }
 }
 void draw()
 {
 fill(col);
 ellipse(x, y, diameter, diameter);
 }
}

There are only two differences between the two classes. One is a
variable name: edge vs diameter and the other is one function
call: rect vs ellipse. This is a massive duplication of code and
effort. Even with cutting and pasting, the program is longer
than it needs to be.

Notes from the Boards Board Notes Set 17 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

4

We can solve this duplication of code and effort by using a
feature of OOP called inheritance. With the correct syntax, we
can create new classes that “inherit” everything in their
parent’s class (without the parent having to die).

Here is how we can do this. First, we have to make a
compromise concerning the variable names. We could use edge
for the circle or diameter for the square. Since both are
dimensions, we will replace the variable names edge and
diameter with the name dimension.

Next, we have to define the parent class of the Square and Circle
class. We will call this the Shape class. Here is the definition:

class Shape
{
 float x, y, dimension, dX, dY;
 color col;
 void setup()
 {
 x = random(10, width/3);
 y = random(10, height/3);
 dimension= random(50, width/10);
 dX = random(2, 10);
 dY = random(2, 10);
 col = color(random(255), random(255), random(255));
 }
 void move()
 {
 x += dX;
 if (x + dimension> width || x < 0)
 {
 dX = -dX ;
 }
 y += dY;
 if (y + dimension> height || y < 0)
 {
 dY = -dY ;
 }
 }
 void draw()
 { // this function is empty
 }
}

Notes from the Boards Board Notes Set 17 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

5

Notice that the draw() function is empty. That is because there is
no shape to draw. The idea of a shape is somewhat abstract. So
we will make no effort to draw shape.

Now we bring on the inheritance. Here are the definitions of
the classes Square and Circle. In the code below, they are
defined as children of the parent class, Shape:
class Square extends Shape
{
 void draw()
 {
 fill(col);
 rect(x, y, dimension, dimension);
 }
}

class Circle extends Shape
{
 void draw()
 {
 fill(col);
 ellipse(x, y, dimension, dimension);
 }
}

The correct syntax is shown in blue in both class definitions.
The word extends tells Processing that everything in the class
Shape can be used here. The variables x, y, dimension and col are
declared and initialized in the parent class, Shape. The
definitions of setup() and move() are also located in the parent
class, Shape. When our code tells a Circle object or a Square object
to do something, Processing looks at the definitions of Circle or
Shape classes to see what to do. If it does not find the answer
there, it looks in the parent class, Shape for instructions. The
only thing needed in the Circle and Square classes are
instructions on how to draw the actual circle or square. This is
done in the definition of the draw() functions.

Inheritance allows us to take advantage of code already
written and that is (hopefully) tested and trusted to be free of
errors.

There is some jargon associated with OOP and this inheritance
stuff.

Notes from the Boards Board Notes Set 17 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

6

One is the diagram we use to show the inheritance
relationships. It is usually in the form of a tree with the parent
at the top of the tree.

parent

children

Shape

Square Circle

siblings

super class

sub class

Terms used in describing the use of inheritance are shown
above. The use of inheritance is often stated in terms of
“extending” the Shape class to define the Square and Circle classes.
Another phrase is that a programmer is “sub-classing” the Shape
class to define the Square and Circle classes.

This works fine with single references or an array of references.
The code below works properly:
Shape [] array;
void setup()
{
 size(600, 600);
 array = new Shape[100];
 initArray();
 background(0);
}
void draw()
{
 fill(0);
 rect(0, 0, width, height);
 moveAndDrawAll();
}
void moveAndDrawAll()
{
 for (int i = 0; i < array.length; i++)
 {
 array[i].move();
 array[i].draw();
 }
}

void initArray()
{
 for (int i = 0; i < array.length; i++)
 {
 float randomNumber = random(2);
 if (randomNumber < 1)
 {
 array[i] = new Square();
 }
 else
 {
 array[i] = new Circle();
 }

 array[i].setup();
 }
}

Notes from the Boards Board Notes Set 17 Page

Copyright Jim Roberts June 2011 Pittsburgh, PA 15221 All Rights Reserved

7

All elements in an array in Processing have to be the same type.
We cannot mix int and float values in the same array. This
means that we cannot mix Square and Circle object references in
the same array. BUT, we can declare an array of references to
their parent type, Shape. This is perfectly legal. However, we do
not declare any actual Shape references. When it is time to new
the references in the array (shown in purple), this code uses a
random value to choose between a Square or Circle object
reference.

