
Notes from the Boards          Board Notes Set 15                               Page  

Copyright Jim Roberts June  Pittsburgh, PA 15221  All Rights Reserved 

1 

Arrays Again – Coding a Graph:  
(These notes use the class code set 13) 
 
We have given two reasons for using arrays: 

• we can store a lot of data under a single variable stores 
the individual values 

• we can reduce the size of your code by using loops with the 
variable that is storing the data. 

In this set of notes, we will use an array of gold prices1 as data 
for drawing a graph.  This is being done as an exercise to 
demonstrate new ideas and reinforce older concepts:  The 
reinforcements include a step-wise development  of the code 
starting with the “simpler” tasks and moving into the more 
complex – ideally learning along the way.  Other ideas are 
global variables, the use of the map() function, ifs and loops. 
  
The new ideas concern the use of an array. 
 
Jim has arbitrarily divided the program into a set of tasks.  
This is not presented as the best or the only way to develop the 
code.  It is just one way.  Feel free to find fault with his strategy.  
The more you think about this, the better prepared you will be 
for your eighth homework and the projects. 
 
Here are the steps Jim used to develop the code: 
1.  Get the data and code the array declaration and the 
initialization:  
int [ ] gold = {  185, 133, 139, 180, 250, 616, 500, 366, 464, 395,  
                  284, 352, 405, 432, 488, 415, 358, 350, 329, 376,  
                  377, 398, 353, 292, 286, 294, 260, 292, 257, 400,  
                  434, 564, 683, 937, 978, 1094, 1401 }; 
2.  Add some variables to define the edges of the graph.  This 
will make the adjustments of the final graph easier. 
float leftEdge, rightEdge, topEdge, bottomEdge; 
 
void setup( ) 
{ 

                                                
1 This is the closing price of gold in dollars on the London market on or about February 
23 from 1975 through this year. 



Notes from the Boards          Board Notes Set 15                               Page  

Copyright Jim Roberts June  Pittsburgh, PA 15221  All Rights Reserved 

2 

  size( 1000, 600 ); 
  f = loadFont( "f.vlw" ); 
  textFont( f ); 
  textSize( 12 ); 
  textAlign(CENTER, CENTER); 
  rectMode( CORNERS ); 
   
  leftEdge = 10; 
  rightEdge = width-10; 
  topEdge = 20; 
  bottomEdge = height-20; 
} 
 
3.  Plot points horizontally based on the years of the data.  This 
ignores the actual values of the gold prices in the array.  We 
just want to be sure that we can accurately space the years 
across the window.  This code is in the set13A folder 
void testPlots( ) 
{ 
  fill( 0 ); 
  stroke( 0, 0, 255 ); 
  strokeWeight( 4 ); 
  for ( int i = 0; i < gold.length; i++) 
  { 
     float x =  
        map ( i,  
               0, gold.length,  
               leftEdge, rightEdge); 
     float y = height/2; 
     
  
     point( x, y ); 
  }   
} 

 
 
 
 
 
We use a for loop to traverse the array. 
For each iteration we compute the x value of 
the point using the map function: 
<  Map this value 
<  which is between these two values 
<  into a range between these two values. 
We do not care about the y value – we just 
want to prove that we can find the correct 
place for the years 
<  Draw the point 
 
 

This code gives us this output: 

 



Notes from the Boards          Board Notes Set 15                               Page  

Copyright Jim Roberts June  Pittsburgh, PA 15221  All Rights Reserved 

3 

3.  Now that we know we can plot the horizontal distances for 
each year, we can concentrate on the vertical location of each 
point using the data in the array. 
This code is in the set13B folder 
 
 
 
 
 
 
 
int minValue, maxValue; 
 
void setup( ) 
{ 
 . . . 
  minValue = min(gold); 
  maxValue = max(gold); 
} 
 
void testPlots( ) 
{ 
  fill( 0 );    
  stroke( 0, 0, 255 ); 
  strokeWeight( 4 ); 
   
  for ( int i = 0; i < gold.length; i++) 
  { 
     float x =  
        map( i,  
              0, gold.length,  
              leftEdge, rightEdge); 
 
     float y =  
         map( gold[i],  
         maxValue, minValue,  
         topEdge, bottomEdge); 
 
     point( x, y ); 
  } 

To compute the horizontal position of the 
points using the data in the graph, we will use 
the map function to map each value in the 
array to the vertical location in the graph.  
To use the map function we must know the 
max and min values in the array.  We need 
two new global variables: 
< 
 
 
And we have to determine their values.  We 
do this the setup( ) function using the  
< min( ) and the 
< max( ) functions. 
 
 
 
 
 
 
 
 
We go back inside the for loop that is 
traversing the array. 
Old code from the previous part 
 
 
For each iteration we compute the y value of 
the point using the map function with the 
data in the array: 
<  Map the value of element [ i ] of gold 
<  which is between these two values 
<  into a range between these two values. 
 
< Draw the point. 
 
 

 
 
 



Notes from the Boards          Board Notes Set 15                               Page  

Copyright Jim Roberts June  Pittsburgh, PA 15221  All Rights Reserved 

4 

This code gives us this output: 

 
 
4.  We can successfully locate points for the data in the array 
horizontally and vertically.  Now we will label each point with 
the year.  Initial tests showed that the four-digit year is so long 
it overlaps the neighboring values so we will use only two digits 
or at least we try to do that.  This attempt will use the % 
operator to strip away the first two digits. 
This code is in the set13C folder 
 
 
 
 
 
 
final int FIRST_YEAR = 1975; 
final int LAST_YEAR = 2011; 
 
void testPlots( ) 
{ 
  fill( 0 ); 
  stroke( 0, 0, 255 ); 
  strokeWeight( 4 ); 
  
  for ( int i = 0; i < gold.length; i++) 
  { 
     float x = map( . . . ); 
     float y = map( . . . ); 
     point( x, y ); 
     int year =  
          (i + FIRST_YEAR)%100; 
     text( year, x, y-10 );    
  } 
} 

We are still inside the for loop that is 
traversing the array.   The loop iterates from 
0 to 36 for the 37 values in the array.  We 
need to display the years 75 to 11 for 1975 
to 2011.  To make this process easier, we 
add two new global constants.  These make 
the code more readable and, if we want to 
expand the data to include years before 1975 
or revisit this next year, we can keep the 
graph accurate by just editing the values of 
these constants 
 
 
 
 
 
 
Refer to the previous parts for explanation on 
this code. 
 
We compute the value to be displayed and 
store it in a local variable named year.  The 
arithmetic we use adds 1975 to the for loop 
variable.  When i is zero, this addition gives 
us the value 1975.  To “strip” away the first 



Notes from the Boards          Board Notes Set 15                               Page  

Copyright Jim Roberts June  Pittsburgh, PA 15221  All Rights Reserved 

5 

two digits, we use the mod operator ( the % ) 
for division.  This evaluates to the last two 
digits of the year.          19 R 75   
  1975 % 100   100 ) 1975 
                           -100 
                              975 
                             -900 
                                75  

This code gives us this output: 

 
5.  It is difficult to see in the screen print but the years 2000 to 
2009 have only one digit.  The leading zero is suppressed.  
There are several ways to fix this2 and Jim decided not to 
introduce any new syntax or functions at this point.  So his 
“fix” will use an if/else control structure as we will see. 

                                                
2 The functions nf( ), nfc( ), nfp( ), and  nfs( ) can be used to format output with the 
text( ) function. The API explains these nicely and they are simpler to use than the code 
that Jim is showing here. 



Notes from the Boards          Board Notes Set 15                               Page  

Copyright Jim Roberts June  Pittsburgh, PA 15221  All Rights Reserved 

6 

 This code is in the set13D folder 
void testPlots( ) 
{ 
  fill( 0 ); 
  stroke( 0, 0, 255 ); 
  strokeWeight( 4 ); 
 
  for ( int i = 0; i < gold.length; i++) 
  { 
     float x = map( . . . ); 
     float y = map( . . . ); 
     point( x, y ); 
      
     // label the points: 
     int year =  
        (i + FIRST_YEAR)%100; 
     // add a leading zero for years    
     //  2000 to 2009 
     if ( year < 10 ) 
     { 
       text( "0" + year, x, y-10 ); 
     } 
     else 
     { 
       text( year, x, y-10 ); 
     } 
     // end new code 
  }   
} 

 
 
 
 
 
 
 
 
 
We are still inside the for loop that is 
traversing the array.  The strategy is to 
“look” at the value of the year variable that 
we want to print.  If it is less than 10, we 
add a zero to the first argument of the call 
of the function text(  ) 
 
 
< Test the value of year 
 
<  Here we add the zero to the text output. 
 
 
 
<  Here we do not. 
 
 

This output is the result of the new code: 

 
Again, it is a bit difficult to see but it works. 



Notes from the Boards          Board Notes Set 15                               Page  

Copyright Jim Roberts June  Pittsburgh, PA 15221  All Rights Reserved 

7 

6. Now we will add code to connect the points that we have 
plotted.  This code is in  the set13E folder: 
void testPlots( ) 
{ 
  fill( 0 ); 
 
 
 
  float oldX, oldY; 
  oldX = 0; 
  oldY = 0; 
   
  for ( int i = 0; i < gold.length; i++) 
  { 
     float x = map( . . . ); 
     float y = map( . . . ); 
     stroke( 0, 0, 255 ); 
     strokeWeight( 4 ); 
     point( x, y ); 
     int year =  
         (i + FIRST_YEAR)%100; 
     if ( year < 10 ) 
     { 
       text( "0" + year, x, y-10 ); 
     } 
     else 
     { 
       text( year, x, y-10 ); 
     } 
 
 
     // connect points with lines 
     if ( i > 0 ) 
     { 
        strokeWeight( 1 ); 
        stroke( 0 ); 
        line( oldX, oldY, x, y );       
     }  
     // save current value of x and y      
     // for use in the next iteration 
     oldX = x; 
     oldY = y; 
  }  
} 

The way we will connect the points is to 
declare two local variables named oldX and 
oldY.  We will use these to “remember” the 
(x, y) values of the previous point.  This is 
more efficient than computing them again.  
Since these are local variables, we must 
initialize them which is done here: 
< 
< 
 
We are still inside the for loop that is 
traversing the array.   
 
We have to move these two lines of code 
down into the loop because we are going to 
alter these values to draw the lines that 
connect the points. 
 
 
 
 
  
 
 
 
  
 
We will connect this point to the previous 
point.  The point for element [0] has no 
previous point so we need to use an if to 
insure that we do not try to do this.  
Otherwise, the code crashes with an 
arrayindexoutofbounds error. 
 
 
 
 
 
Finally we “remember the current value of x 
and y for the point so we can use it to draw 
the line in the next iteration. 

 



Notes from the Boards          Board Notes Set 15                               Page  

Copyright Jim Roberts June  Pittsburgh, PA 15221  All Rights Reserved 

8 

This new code gives us this output: 

 
 
7.  Next, we will color the lines.  Lines that show an increase of 
the price will be green and lines that show a decrease will be 
red.  This code is in  the set13F folder: 
void testPlots( ) 
{ 
  fill( 0 ); 
  float oldX, oldY; 
  oldX = 0; 
  oldY = 0; 
  for ( int i = 0; i < gold.length; i++) 
  { 
     float x = map( . . . ); 
     float y = map( . . . ); 
     stroke( 0, 0, 255 ); 
     strokeWeight( 4 ); 
     point( x, y ); 
     fill( 0 ); 
     int year = 
          (i + FIRST_YEAR)%100; 
     if ( year < 10 ) 
     { 
       text( "0" + year, x, y-10 ); 
     } 
     else 
     { 

We are still working inside the for loop that 
is traversing the array. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Notes from the Boards          Board Notes Set 15                               Page  

Copyright Jim Roberts June  Pittsburgh, PA 15221  All Rights Reserved 

9 

       text( year, x, y-10 ); 
     } 
     // for years after 1975,  
    //  compare current price to last  
    //  year's price and color line  
    //  green for gains and red for  
    //  losses 
     if ( i > 0 ) 
     { 
         
 
 
 
 
 
 
        if (y < oldY) 
        { 
          stroke( 0, 200, 0 ); 
        } 
        else 
        { 
           stroke( 255, 0, 0 ); 
        }  
        strokeWeight( 1 ); 
        line( oldX, oldY, x, y ); 
     } 
     oldX = x; 
     oldY = y; 
  } 
   

 
From the previous code, remember that we 
are drawing lines from this point back to the 
previous point.  The [0]th point has no 
previous point so we use an if to avoid trying 
to draw a line from the [0]th point to the  
[-1] point. 
< 
We could compare the values of gold in the 
array but we used those values to compute 
the y location of the point so we can use the 
y values.  There can be a bit of confusion 
here.  We mapped the y value to the price of 
gold in a way that gives us smaller values for 
y when the price of gold is higher.  
So if the value of y is smaller than the old 
value of y, the price of gold is higher.  In 
this case, we color the line green. 
<  This is green. 
 
Otherwise we color the line red. 
 
<  This is red 

Here are the results of the new code: 

 



Notes from the Boards          Board Notes Set 15                               Page  

Copyright Jim Roberts June  Pittsburgh, PA 15221  All Rights Reserved 

10 

8.  The next task is to draw some gold bars – hey . . it is the price 
of gold.  This code is in the set13G folder: 
void setup( ) 
{ 
  size( 1000, 600 ); 
  f = loadFont( "f.vlw" ); 
  textFont( f ); 
  textSize( 12 ); 
  textAlign(CENTER, CENTER); 
  rectMode( CORNERS ); 
 
void testPlots( ) 
{ 
  fill( 0 ); 
  float oldX, oldY; 
  oldX = 0; 
  oldY = 0;   
  for ( int i = 0; i < gold.length; i++) 
  { 
     float x = map( . . . ); 
     float y = map(. . . ); 
     stroke( 0, 0, 255 ); 
     strokeWeight( 4 ); 
     point( x, y ); 
     fill( 0 ); 
     int year =  
          (i + FIRST_YEAR)%100; 
     if ( year < 10 ) 
     { 
       text( "0" + year, x, y-10 ); 
     } 
     else 
     { 
       text( year, x, y-10 ); 
     } 
     if ( i > 0 ) 
     { 
        if (y < oldY) 
        { 
          stroke( 0, 200, 0 ); 
        } 
        else 
        { 
           stroke( 255, 0, 0 ); 
        }  

To simplify the drawing of the gold bars we 
will use a rectMode argument named: 
CORNERS 
This allows us to specify the upper left 
corner and the lower right corner of the 
rectangle.  We set this mode in the setup 
function: 
< 
 
 
 
 
 
We are still working inside the for loop that 
is traversing the array. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Notes from the Boards          Board Notes Set 15                               Page  

Copyright Jim Roberts June  Pittsburgh, PA 15221  All Rights Reserved 

11 

        strokeWeight( 1 ); 
        line( oldX, oldY, x, y );         
     }      
     // draw the gold bars 
     fill( 200, 200, 0 ); 
     stroke(0); 
     strokeWeight( 1 ); 
 
     rect 
           ( x-5, y,  
           x+5, bottomEdge ); 
      
     oldX = x; 
     oldY = y; 
  }  
} 

We do not need any new variables to do this 
since we have computed the x and y value of 
the point.  We have a variable for the 
bottom edge of the graph.   
< We set the fill to a sorta’ gold color. 
< We set the stroke to black and  
< the stroke width to 1 pixel. 
 
We draw a rect  
< This is the top left corner and 
< this is the bottom right corner.   
We use -5 and +5 to give us a bar width of 
10 pixels.  The variable y will be the top of 
the bar at the level of the point.  The 
variable, bottomEdge will be the bottom of 
the bar.   

Here are the results of the new code: 

 



Notes from the Boards          Board Notes Set 15                               Page  

Copyright Jim Roberts June  Pittsburgh, PA 15221  All Rights Reserved 

12 

9.  We will compute the mean value of the data in the array.  
This code is in the set13H folder: 
int [ ] gold = {  . . .}; 
PFont f; 
 
final int FIRST_YEAR = 1975; 
final int LAST_YEAR = 2011; 
 
float leftEdge, rightEdge, topEdge, 
bottomEdge; 
 
int minValue, maxValue; 
 
float mean; 
 
void setup( ) 
{ 
  size( 1000, 600 ); 
  . . . 
  mean = computeMean( ); 
  println( mean ); 
} 
 
void draw( ) 
{ 
   testPlots( );    
   noLoop( );  
} 
 
float computeMean( ) 
{ 
   float sum = 0; 
   for(int i = 0; i < gold.length; i++) 
  { 
     sum += gold[i]; 
  }  
  float mean = sum/gold.length; 
 
 
  return mean; 
} 
 

 
 
 
 
 
 
 
 
 
We add a new global variable to store the 
mean value. 
< 
 
 
We call a new function – defined below – and 
assign the vaule it returns to the new global 
variable mean. 
< 
< We print it in the console window to check 
its value. 
 
 
 
 
 
 
Here is the definition of the computeMean( ) 
function.   
 
We compute the sum using the strategy 
discussed in class on Monday and Friday.   
 
 
 
< We divide the sum by the length of the 
gold array and  
 
< return the result 
 
 
 
 



Notes from the Boards          Board Notes Set 15                               Page  

Copyright Jim Roberts June  Pittsburgh, PA 15221  All Rights Reserved 

13 

Since we are not altering the graphing code, the graphics 
window remains unchanged.  However, the value of the mean 
is displayed in the console window: 

 
 



Notes from the Boards          Board Notes Set 15                               Page  

Copyright Jim Roberts June  Pittsburgh, PA 15221  All Rights Reserved 

14 

10.  Using the computed mean value, we will draw a 
horizontal line to mark the value on the graph. This code is in  
the set13I folder: 
void draw( ) 
{ 
   testPlots( );  
 
   plotMean( ); 
  
   noLoop( );  
} 
 
void plotMean ( ) 
{ 
   float y =  
      map( mean,  
            maxValue, minValue,  
            topEdge, bottomEdge);  
   stroke( 0, 0, 255 ); 
   strokeWeight( 2 ); 
   line( leftEdge, y, rightEdge, y );   
   fill( 0, 0, 255 ); 
   text( "Mean", leftEdge+20, y-10 ); 
} 

 
Since we do not need a for loop to plot the 
mean line on the graph, we will use a new 
function to draw the line. 
< 
 
 
 
Here is the definition of the function, 
plotMean( ). 
 
We compute the y coordinate of the mean line 
using the map function to map the mean into 
the vertical size of the graph. 
 
 
 
< We draw a line at the computed y location 
and 
< we label it. 

Here is the result of the new code: 

 
 



Notes from the Boards          Board Notes Set 15                               Page  

Copyright Jim Roberts June  Pittsburgh, PA 15221  All Rights Reserved 

15 

 
11.  We will compute the median value of the data in the array 
in a manner very similar to the way we computed the mean.  
This code is in the set13J folder: 
int [ ] gold = {  . . .}; 
PFont f; 
final int FIRST_YEAR = 1975; 
final int LAST_YEAR = 2011; 
float leftEdge, rightEdge, topEdge, 
bottomEdge; 
int minValue, maxValue; 
float mean, median; 
 
void setup( ) 
{ 
  size( 1000, 600 ); 
  . . . 
  mean = computeMean( );  
  median = computeMedian( ); 
  println(median);  } 
 
. . . 
 
float computeMedian( ) 
{ 
    int [ ] sortedGold = sort( gold ); 
 
 
 
    
 
 
    int medianIndex = gold.length/2; 
 
 
 
 
 
 
   float median = gold[ medianIndex ]; 
    return median; 
} 

 
 
 
 
 
We add a new global variable to store the 
median value. 
< 
 
 
 
We call a new function – defined below – and 
assign the returned value to the new global 
variable median. 
< 
< We print it in the console window to check 
its value. 
 
 
Here is the definition of the  
computeMedian( ) function.   
This code uses a Processing API function 
named sort( ).  This function requires an 
array as the argument.  It returns a new 
array containing the original values of the 
argument but in sorted order with the 
smallest value in the [0]th element. 
 
The median value is the middle value or the 
value that is the middle element.  The index 
of the middle element is gold.length/2 when 
we have an odd number of values.3    We are 
lucky. The array has an odd number of 
elements. 
 
< We find the median value and 
< return it. 
 

                                                
3 If there are an even number of values, we are supposed to average the two middle 
values. 



Notes from the Boards          Board Notes Set 15                               Page  

Copyright Jim Roberts June  Pittsburgh, PA 15221  All Rights Reserved 

16 

Since we are not altering the graphing code the graphics 
window remains unchanged.  However, the value of the 
median is displayed in the console window: 

 



Notes from the Boards          Board Notes Set 15                               Page  

Copyright Jim Roberts June  Pittsburgh, PA 15221  All Rights Reserved 

17 

12.  Using the computed median value, we will draw a 
horizontal line to mark the value on the graph using the same 
strategy we used to plot the mean line. This code is in the set13K 
folder: 
void draw( ) 
{ 
   testPlots( ); 
   plotMean( ); 
    
   plotMedian( ); 
   noLoop( );  
} 
 
void plotMedian( ) 
{ 
   float y =  
    map( median,  
          maxValue, minValue,  
          topEdge, bottomEdge);  
   stroke( 0 ); 
   strokeWeight( 2 ); 
   line( leftEdge, y, rightEdge, y );   
   fill( 0 ); 
   text( "Median", leftEdge+20, y-10 
);   
} 

 
 
Since we do not need a for loop to plot the 
median line on the graph, we will use a new 
function to draw the line. 
< 
 
 
 
Here is the definition of the function, 
plotMedian( ). 
 
We compute the y coordinate of the median 
line using the map function to map the median 
into the vertical size of the graph. 
 
 
< We draw a line at the computed y location 
and 
< we label it 

Here is the result of the new code: 

 



Notes from the Boards          Board Notes Set 15                               Page  

Copyright Jim Roberts June  Pittsburgh, PA 15221  All Rights Reserved 

18 

There is a lot here.  If you work through this carefully, you 
should experience a learning curve in your understanding of 
arrays and how to use them.  Refer to the class code that is 
copied into this set of notes.  Try to alter it to do slightly 
different things.  Here is a possible list: 

1. Replace the bars with a circle that has a diameter 
mapped to the value of gold. 

2. Replace the lines with the beginShape( ) – vertex( ), endShape( ) 
functions.  Here is what Jim ended up getting for his 
efforts …  This will take some experimenting. 

 
3. Using the rotate( int ) function,  try to wrap the bars 

around a point like a star.    You will need to use the  
translate( int, int ) function move to the middle of the 
screen. This can be done in 2-d space. 

4. Add the horizontal and vertical axes lines, Put marks for 
the years and for $ amounts and label them.  You may 
have to alter the edge variable values to get these to fit on 
the window. 

 
The more you work with arrays, the easier it will be to use them 
and to think about them as aids to achieving your goals in 
your code for homework 8 and the two projects. 


