
Notes from the Boards Set #13 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

1

The while Loop Again :
The Processing API explains the while loop as shown below:

The expression must be a boolean expression. Remember that
boolean expressions evaluate to either true or false. Your code
may use any of the following As the boolean expression:

- an expression that uses the relational operators:
 == < > <= >= !=
and possibly the logical operators
 && == !

- a boolean variable

- a function that returns a boolean value

Notes from the Boards Set #13 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

2

A New Loop – The for Loop:
The Processing API explains the for loop as shown below:

We usually use a for loop when we know exactly now many
times we want to repeat some action or set of actions. It turns
out that the for loop is ideal for our last major new area of
work – the dreaded, evil, terribly complex, guaranteed to fail
you topic of ARRAYS . . .

Notes from the Boards Set #13 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

3

And now – the Array:
Arrays are not that evil or terribly complex. You have existed
with a set of arrays since you were born. You have intelligently
worked with these arrays ever since you can remember
thinking about anything. Any component of your life that
consists of a sequence of numbered events is an array:

- hours in a day
- days in a week
- years
- cents in a dollar
- semesters in a college career

All of these are arrays. Some are numbered nicely like the
years or the days of the month. Others use words to represent
numbers such as Monday or January. We understand that
Monday is the second day of the week and first day of the work
week.

Some of these arrays are multiple dimensioned arrays.
Consider years:

- one dimension is the sequence of years
- within each year is a second dimension -- months
- within each month is a third dimension – days
- within each day is a fourth dimension – hours
- . . .

Most buildings are two-dimensional arrays:

- floors are numbered 1 - ??
- rooms are numbered starting with the floor number1

Arrays are very useful for storing large amounts of similar
(meaning the same type of) data. Jim ran a program in class
that showed you only a little bit of code:
// Arrays Opening Demo
// change this number to change the number of squares.
final int MAX = 1;

1 Except for Gates – Jim’s office is 6019. There is no office beneath him and the office
above him is 7021??? The reason there is no office beneath his office is because his
office is literally stuck on the side to Gates and suspended out in thin air (aided by several
terribly thin columns of concrete – not that this bothers him in any way… really. . .

Notes from the Boards Set #13 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

4

This line declares a constant – not a variable. It is a constant
because of the first word on the line:

final int MAX = 1;
The word final means that 1is the only or final value that MAX
will ever have. The convention among many programmers is
that constants have names that are all upper case letters. If we
remove the word final, then max becomes an ordinary variable.

Here is the result of the execution of the program that has this
line of code:

Then Jim changed the value of MAX to 10:

final int MAX = 10;
and this was the result:

A single edit produced this effect. How many lines of code
would it take you to alter the program that draws the first
screen to produce the output in the second screen? More than
1???

Notes from the Boards Set #13 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

5

Here was the second change Jim made in class:
final int MAX = 100;

which produced this output:

How many edits would it take to you produce this? It would
take a lot of edits. The difference between the single edit that
Jim made and the edits you would have to make is the result of
one idea – the array. If we want to animate something, we will
probably have more than a few values to animate. Using
individually named variables for all of those values will work
but it will become very difficult to manage and very time
consuming to change. The array offers us a way to increase
(or decrease) the amount of data in our programs is a very
manageable way.

And so we begin our last new MAJOR area of work2.

2 There is other new stuff coming but this is the last MAJOR new stuff…

Notes from the Boards Set #13 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

6

Here is Processing’s API entry for arrays:

=>

<=

This shows three different ways to build arrays. We will use the
middle example for most of our work. Later we will use the first
and third examples.

The syntax for the array is the set of []3 which means we have
an array. Arrays are like variables in that they have a name
and a type. The difference is that they can have more than a
single value. This syntax:

int number = 42;
declares a variable named number configured to store int values
and it has a value of 42. It can only have one value. If we
execute this syntax:

number = 2;
we destroy the value 42. The variable number can only store one
value at a time.

3 These are brackets or, to may programmers, square brackets

Notes from the Boards Set #13 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

7

If we alter the syntax slightly:
int [] numbers = { 42. 2 };

we can store multiple values.

The [] after the int converts the variable from a primitive (can
only store one value) to an array. We use the word “reference”
to describe the array. The idea of a reference is somewhat
subtle. Its meaning will become apparent later in our work
with arrays. One way to think of the idea of a reference is to
consider the number of our classroom. 5222 Gates is a
reference to a space in a building. There is nothing inherent
in the room that makes it 5222. It is not even on the fifth floor
of Gates. It is really on the 4.5th floor. The room number 5222
is just a reference to a space. If we all use this same reference,
we get to the same place. The room we call 5222 Gates has
other references that we as members of the class understand
when we are talking to each other:

- “I will meet you at the classroom”
- “I left this in Jim’s classroom”
- “My programming classroom has a weird shape”

It turns out that one array can have multiple references while
primitive variables can have only one name. Again, we will
look at this idea a bit later.

The stuff in blue on the right side of the assignment operator:

int [] numbers = { 42. 2 };
is called the initializer list. This initializer list tells Processing to
allocate enough memory space to store two int values and to
assign the values 42 and 2 to that space. The array has
permanent, unchangeable space for 2 int values. This cannot
shrink to 1 or zero or grow to 3 or larger. Processing
automatically attaches one additional piece of information to
the array: its length. The length is a constant and is often called
a field. The value of length is the number of values we ‘can store
in the array. In this case, the value of length is 2. To access this
field, we use the dot or period notation in a manner similar to
the width or height of an image:

println(numbers.length);

Notes from the Boards Set #13 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

8

If we want to use (access) one of the values in the array, we
have to tell processing which value. We do this using the []
like this:

println(numbers[0]);
This will print the value 42. This syntax:

println(numbers[1]);
will print the value 2;
OK something strange is going on here. This is a deeply and
closely held secret by the cult of folks known as “programmers”.
The secret is that when we are working with arrays, we start
counting at zero instead of 1.
The numbers in the brackets:

println(numbers[0]);
println(numbers[1]);

are called indexes or indices. The indexes are the locations of the
values stored in the array.

Each value stored in the array is called an element of the array.

The array numbers has a length of 2 so it has 2 elements. The
beginning element has an index of [0]. The last element of the
array numbers has an index of [1]. This code:

println(numbers[0]);
will produce this output:

42
This code:

println(numbers[1]);
will produce this output:

2

This code:

println(numbers[2]);
will produce this output:

Notes from the Boards Set #13 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

9

The array has two places to store int values. The indexes of those
two places are [0] and [1]. The index [0] is called the lower bound
of the array. The index [1] is the upper bound of the array. There is
no index [2] so [2] is said to be “out of bounds”. If we attempt to
use an index of an array that does not exits, Processing throws a
fit. This fit is called an exception. Processing is said to “throw an
exception.” It turns out that there are many fits… er.. exceptions
that Processing can throw when it runs our programs. This is
the first of many we will see in the coming weeks.

An array of two elements may not be useful. What about 10
elements?

int [] xValues = { 34, 65, 12, 85, 34, 29, 91, 23, 54, 67 };
int[] yValues = { 98, 43, 12, 75, 34, 23, 54, 84, 34, 64 };

These two arrays can be use to draw a series of circles or
rectangles. To use these we can take advantage of the for loop.
We use the for loop because we know exactly how may iterations
we need. We need 10 because both arrays have 10 elements.
This code:
 for(int i = 0; i < xValues.length; i++)
 {
 ellipse(xValues[i], yValues[i], 10, 10);
 }
gives us this output:

Notes from the Boards Set #13 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

10

The for loop repeats ten times. Each iteration changes the value
of the variable, i starting with the value 0. When the value of i
is 0, Processing uses the [0] element of the xValues array as the x
coordinate of the circle and the [0] element of the yValue array
as the y coordinate to draw the first circle. For the second
iteration, the value of i is 1. Processing uses the [1] element of
the xValues array as the x coordinate of the circle and the [1]
element of the yValue array as the y coordinate to draw the next
circle. This continues for elements 3, 4, 5, 6, 7, 8, and 9. When
the value of i is 10, the iteration stops.

These two arrays are called “parallel arrays.” They are
parallel because elements with the same index are used to
draw one ci rcle.

As we work with arrays, we need a uniform way to represent
them graphically and we need a uniform set of names for the
parts. Here is how we will do this:

Notes from the Boards Set #13 Page

Copyright Jim Roberts June, 2011 Pittsburgh, PA 15221 All Rights Reserved

11

Note that this jargon is just a important as the jargon used to
identify parts of functions and will be tested in a similar
manner.

The class code for today demonstrates some work with arrays.
You should look at this carefully for the next class. Also,
Shiffman does a very nice job of explaining arrays.

And remember, this is the first pass – we will revisit a lot of this
over and over and over and over and over and over and over and over and over

