Notes from the Boards Set#11 Page 1

User Input

Yow howve seevw the mousePressed() and keyPressed()
functions inw clavyy. These are functiony that WE define
but Processing cally whew av key-pressy or mouse-press
event occurs.

This “wsually” works well but not always. Ay we should
know by now, the draw() functiow is repeated and each
eratiow produces o frame that we see in the graphics
window. What happens if we hold doww the mouse
buttow or a key for several iterations? We need to- do-
some coding to find out. Here iy the code:

void setup()
{

size(200, 400):
}

void draw()

{

printin("in draw() : frameCount is " + frameCount);

}

void keyPressed()
{

printin(“ in keyPressed() : frameCount is " + frameCount);

}

and here iy part of the output whew Jim held o key
doww for several seconds:

in draw() : frameCount is 74
in draw() : frameCount is 75
in draw() : frameCount is 76
in draw() : frameCount is 77
in keyPressed() : frameCount is 77
in draw() : frameCount is 78
in draw() : frameCount is 79
in draw() : frameCount is 80
in draw() : frameCount is 81
in draw() : frameCount is 82
in draw() : frameCount is 83
in draw() : frameCount is 84
in draw() : frameCount is 85

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set#11 Page 2

Notice that the code in the keyPressed() functionw was
executed but only for one iteratiow. Jim held the key
doww for at least two- seconds or about 120 iterations.
We might have expected to- see this:

in draw() : frameCount is 77

in keyPressed() : frameCount is 77
in draw() : frameCount is 78

in keyPressed() : frameCount is 78
in draw() : frameCount is 79

in keyPressed() : frameCount is 79

in draw() : frameCount is 197

in keyPressed() : frameCount is 197
in draw() : frameCount is 198

in keyPressed() : frameCount is 198

So- we cowvw conclude that the keyPressed() functiow iy
called one time for each presy during the frame iw
whict it iy pressed. The event iy ignored in subsequent
frames so- that holding doww the key does not cause the
functiow to- be repeatedly called and executed.

The same s true for the mousePressed() function.

But what if we wank to- do- something ay long as o key iy
held doww or the mouse buttow iy pressed. Asking the
wser to- presy and release the key or buttow 60 times per
second sounds av bit wnwreasonable. . .

Oh whot shall we do-..??7?

The answer iy held by two- yystem variables that are of
the type, boolean. These are named:

keyPressed and mousePressed
The are not functionsy - there are no- parentheses . . .

Since these variables are boolean variabley, the have
either the value of true ov false:

- true whew the buttow or a key is doww

- false whew the buttow or all keys are up

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards

Set#11

Page 3

So, we caw wge thew to- see if either the buttow or o key

s doww.

Here iy the Demo- 5 code programy iv Clasy Code Set 09

// Set 09 Class Code
// Demo 5

void setup()

{
size(400, 400);
textSize(14);
textAlign(CENTER, CENTER);
stroke(0, 0, 255):
strokeWeight(5);
background(255):

}

void draw()

{
fill(0):
text("Press a Key
stroke(0, 0, 255):

..", width/2, 30):

checkKey():
checkMouse():

)
void checkMouse()
{
if (mousePressed == true)
{
line(mouseX, mouseY, pmouseX, pmouseY):
}
}

void checkKey()

This first part is the usual stuff

For each iteration of draw we tell
Processing to execute these two functions

This is the definition of checkMouse()
where we test the system variable
mousePressed to see if it is true. If it is
true, we draw a line from the location of
the mouse in this frame back to the
location of the mouse in the previous
frame.

If the mouse button is not down, we draw

nothing. This works for every frame the
button is down.

We do the same thing in this function

{ using the keyPressed variable. If any key
if (keyPressed == true) is down, we change the color of the line
{ to red.
stroke(255, 0, 0):
}
}

Yow should wse the keyPressed() and mousePressed()
functiow if they will work and use the mousePressed and

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set # 11 Page 4

keyPressed()variables only whew the functiow doesy not
accomplisiv what yow need to- do-

Here iy the Demo- 4 code programsy iv Classy Code Set 09
Demo- 4 introduced yow to- the map() function. The
map() functiow iy very helpful inw moany ways. We coaw
wse it to- scole v value from one range to- another.
Probably owr most commonw mapping iy temperature
whew we covnwert temperaturey inw degrees Fahrenheit to-
degrees iw Celsiug. We also- map whew we convert
currency from one form to- another.

Mapping inw our programming oftenw uses the mouse
locatiow ivw the window to- determine o value for color
or rotation. We will do- color next. Demo 5 mapped the
mouse’y locatiow iv the window to- ity corresponding
locatiow invv v bow inside the window.

The larger yellow dot iy the actual mouse locationw and
the smaller white dot iy the mapped mouse locatiow.
The mapped locatiow is proportionally the same iw the
greew rectongle as the actual locatiow is in the entire
window.

The map() functiow requires five argumenty of either
float orint. Here iy the line of code that maps the x
coordinate of the white dot based onw the x coordinate
of the yellow dot:
argument # 1 2 3 4 5
int x = int(map(mouseX, O, width, smallRectX, smallRectX+smallRectDim)):

Let’s take the arguments one at o time:

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set # 11 Page 5

Arg 1 iy the value we need to- map - in this case it is the
x coordinate of the mouse.
Arg 2 iy the smallest value the mouwse cavw hawve -- iw

this case thiy iy the left edge of the window withv o
coordinate value of zero.

Arg 3 iy the largest value the mouse canw hoawe -- which
iy the right edge of the window. It hay o coordinate
value of 399.

Arg 4 iy the smallest value of the range into- which we

are mapping argl. The inner box's left edge has v
coordinate value of smallRectX pixels, which iy 160.

Arg 5 iy the smallest value of the range into- which we
are mapping argl. The inner box's right edge has o
coordinate value of (smallRectX + mallRectDim) pixels,
which iy 280.

// Friday February 11 Class Code This is the usual stuff for a while
// Demo 5
// map function

color bigRectColor, smallRectColor:

color actualMouselocationColor,
mappedMouselLocationColor:

int smallRectX, smallRectY, smallRectDim;

void setup()

{
size(400, 400);

bigRectColor = color(0)
smallRectColor = color(18, 98, 3);

actualMouselLocationColor =
color(255, 255, 0);

mappedMouseLocationColor =
color(255);

smallRectX = int(width*.4);
smallRectY = int(height*.4);
smallRectDim = int(width*.2);

Until we get to here.

noCursor(); There are several different forms of
} cursor we can use and we can turn it off
completely. Check the API for cursor.

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards

Set#11

Page 6

void draw()

{
background(bigRectColor):;
fill(smallRectColor);
noStroke():
rect(smallRectX, smallRectY,
smallRectDim, smallRectDim);

if (mousePressed == true)

{

showActualMouselocation():
showMappedMouseLocation():
}
}

void showActualMouselocation()

{

stroke(actualMouselocationColor);
strokeWeight(8):
point(mouseX, mouseY):

}

void showMappedMouseLocation()
{

stroke(mappedMouselocationColor):
strokeWeight(3):;
int x =

int(

map(mouseX,
0, width,
smallRectX, smallRectX+smallRectDim));

if (x < smallRectX)

{

}

else if (x > smallRectX+smallRectDim)

{
}

x = smallRectX;

x = smallRectX+smallRectDim;

int y = inf(
map(mouseY,
0, height,
smallRectY smallRectY+smallRectDim)):
if (y < smallRectY)
{

}

else if (y > smallRectY+smallRectDim)

{

}
point(x, y):

y = smallRectY:

y = smallRectY+smallRectDim:

We only map the mouse when the mouse
button is pressed.

This is called when the mouse button is
pressed.

It sets the color and size of the stroke
and draws a point at the location of the
mouse in the window.

This is also called when the button is
pushed.

It does the mapping of the mouse’s
location into the small green rectangle.
The map() function returns a float so we
have to use the int function to convert
the value to an int.

We are mapping mouseX

which has a value between zero and 400
inside the green rect which is 160 to 280.

The map() function does not limit the
values - it maps them. Jim's testing
found that the mouse was tracked outside
the window on his machine so he added
this if/else if to keep the mapped value
between 160 and 280.

This is the same code mapping the mouse’s
y location into the green rect.

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set # 11 Page

Here iy the Demo- 6 code programsy iv Classy Code Set 09
Demo- 6 mapped the mouse locatiow into- o color value
for gray AND mapped the color into- the locatiow fo- the
yellow line. A Quick Refresher - zero iy black, 255 iy
white, all values ivw betweew are gray. Here iy the
mapping for o small value of mouseX:

demob

Here iy o mapping for o large value of mouseX:

demo6

The code iy o the next page:

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards

Set#11 Page 8

// Friday February 11 Class Code
// Demo 6
// map function

color circleColor;

int circleX, circleY, circleDiameter;
int colorValue:

int barX, barY, barWidth, barHeight:

void setup()

{
size(400, 400);
circleX = width/2;
circleY = int (height*.3):;
circleDiameter = int(width *.3);
colorValue = 127;
circleColor = color(colorValue):
barX = int(width*.1);
barY = int(height*.6):;
barWidth = int(.8*width):
barHeight = int(.3*height):

}

void draw()

{
background(0):

circle():

if (mousePressed)

{
}

drawColorBar():
showData():
}

mapMouse():

void mapMouse()

{

colorValue = int(map(mouseX,
barX, barX + barWidth,
0, 255)):

if (colorValue < 0)

{
colorValue = O;
}
else if (colorValue > 255)
{
colorValue = 255 ;
}

circleColor = color(colorValue):

void drawColorBar()

{

Usual stuff

Lotsa’ global variables to keep the code
readable. . .

We only alter the color value if the
mouse button is down.

This maps the mouseX value into a color
value between O and 255.

If the user moves outside the bar, the
mapping can do strange things so we limit
the upper and lower values of the color
to 0 and 255.

Finally we set the value of the color
variable.

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards

Set#11

Page 9

noStroke():

fill(127).

rect(barX, barY, barWidth, barHeight):
stroke(255, 255, 0):

strokeWeight(5);

float x =
map(colorValue,
0, 255,
barX, barX+barWidth) ;

line(x, barY - 5, x, barY + barHeight + 5).

}

void circle()
{
noStroke():
fill(circleColor);
ellipse(circleX, circleY,
circleDiameter, circleDiameter);

This is drawing the gray bar and a yellow
mark to show where the color value is in
the overall range from O to 255.

The map function is converting the
current colorValue which is between

0 and 255 into an X value in the range
between the left and right edges of the
bar.

Once the mapping is done, we can draw
the yellow line.

Yow may need to- use the map functiow iwv some marnner
of your choosing to- allow the wser to- control some
aspecty of the animatiow iw youwr future work.

Get the clasy code and play withv i€ to- do- different
things. Get to- one of wy soow if yow are not sure what iy

happening inw this code.

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

