Notes from the Boards Set #8 Page 1

Varialblesy - One More (vut notthe las) Time With

AW variables have the following inv commow:

o novme

a type (int, float, ...)
a value

aw “owner”

We caw describe varialbles iw terms of:

who- owng thew (Processing or ws)

who- declares thew

who- initialiges thew

who- changes thew

who- caw wse thew

how long the actually “live” during the executiow
of owr prograwm.

Here iy what we hawve talked about thuy far:

Item System Global
Variables Variables
Who owns them? Processing We do
Who declares them? | Processing We do
Who initializes Processing Processing to a default
them? initial value:
int to zero
float to zero.zero
char to a null
character
boolean to false
If these values are not
useful to us, we have to
initialize the variable
to values that are
useful and we should do
this in the setup()
function.
Who changes them? | Processing We do
Who can use them? |Both Processing | We do
and us

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set #8 Page 2

How long do they As long as the |As long as the program
“live”? program is is running
running

We need to- expand this List with two- additional
categories: function definition arguments and local
variables. We hawve to- do- thiy because yow caw get info-
trouble (yowr code will not ruw) through no- fault of
your oww (wntil yow read this...). Some of yow mavy
howe adready hit thiy problem. Fromw the past:

Systenwv varialles are just that - variables maintained
by Processing. We canw use thew but the code that
declarey and initialiges thew iy hiddew from ws.
Global variables are declared ivw our code and must be
outyide oy visible set of braces. The following code
hasy four global variablesy marked in red:
int i

void setup()

{

size(400, 400):
fill(0);
}
float f;
void draw()
{
rect(O, O, width, height) :
}
char c;
void keyPressed()

{

printin("Value of variable i is " + i);

printin("Value of variable f is " + f):

printin("Value of variable c is " + ¢);

printin("Value of variable b is " + b);

}

boolean b;

Global variablesy do- not hawve to- be declared at the top
of the code but for 15-102, we prefer that yow do-
declare thew at the top. It makes helping yow easier
for us.

The code above produces this output:

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set #8 Page

Value of variable i is O
Value of variable f is 0.0
Value of variable c is [
Value of variable b is false

The four global variabley are named i, f, ¢, and b.
They are global because they are declared outside the
bracey of the three functiow definitiony. Note the
initial values provided by Processing. The char (short
for character) variable iy initialiged to o “special”
null character that doesy not print anything so- we do-
not “see” it. Word put the red box in thiy document to-
indicate that “someihing” is there.

Functiow Definitionw Argumenty are simidowr to- systew
and global variables in that they hawve o name, type,
value, and aw owner. The differences between the
functiow argument and the systewm and global

variables canw be seew in the other itemy inv ouwr List:
Item System Global Function Definition
Variables Variables Arguments
Who owns Processing We do The function does
them?
Who declares Processing We do The function does in
them? the function’'s header
Who initializes | Processing Processing to a defined | Processing initializes
them? initial value: them by copying the
int to zero value of the argument
float to zero.zero in the function call
char to space into the function
boolean to false definition argument.
If these values are not
useful to us, we have
to initialize the
variable
Who changes Processing We do Only this function can
them? change them.
Who can use Both Processing | We do Only this function can

them?

and us

use them.

How long do
they “live”?

As long as the
program is
running

As long as the program
is running

Only as long as the
function is being
executed by
Processing. When the
execution of the
function is complete,
the memory used by
the argument is
returned to the
operating system for
reuse.

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

3

Notes from the Boards

Set #8

Page 4

It is very important to- remember two- things:
1. The initial value comey from the argument in the
functionw call
2. The argument existy ovdy while the functiow iy
being executed.

Local variabley are very simidar to- functiow definitiow
arguments. Once again, we returw to- our List to- find
the differences:

Item System Global Function Definition Local
Variables | Variables Arguments Variables
Who owns | Processing | We do The function does The function does
them?
Who Processing | We do The function does We do between the braces of
declares in the function’s the function
them? header
Who Processing | Processing to a Processing We have to.
initializes defined initial initializes them by
them? value: copying the value If we do not initialize them
int to zero of the parameter before we attempt to use
float to in the call into the | them, Processing will not
zero.zero function argument. | compile our code
char to space
boolean to
false
If these values
are not useful
to us, we have
to initialize the
variable
Who Processing | We do Only this function Only this function can change
changes can change this this local variable
them? argument
Who can Both We do Only this function Only this function can use
use Processing can use this this local variable
them? and us argument
How long As long as | As long as the Only as long as the | Only as long as the function
do they the program is function is being is being executed by
“live”? program running executed by Processing. When the
is running Processing. When execution of the function is

the execution of
the function is
complete, the
memory used by
the argument is
returned to the
operating system
for reuse.

complete, the memory used
by the argument is returned
to the operating system for
reuse.

If we declowre v variable withivw the bracesy of o
function, that variable iy o local varialble. Thisy poink
s very important. Forgetting it caw cost yow av great
deal of time.

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set #8 Page

Here iy how forgelting thiy caw get yow info- trouble:
int x, y, wd, ht;
void setup()

{

size(400, 400);
fill(0);
int x = 100;
int y = 50;
int wd = 15;
int ht = 10;
}

void draw()

{
rect(x, y, wd, ht) ;
pl“in'ﬂn(x + [1] [1] + y + [1] " + wd + " " + h1,);

}

Thiy code compiles and rungy and produces this outpuit
inw the window:

We are expecting to- see av black rectangle located 100
pixels to- the right, 50 pirxelsy doww withv o widthv of 15
pixely and anw height of 10 pirels. But we see nothing.
A clue comes fromv the printin() functionw call. Here iy
what we see in the console window:

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

5

Notes from the Boards Set #8 Page 6

The values of the global variables are all gero. So
what happened???
int x, y, wd, ht;
void setup()

{

size(400, 400);
fill(0);
int x = 100;
int y = 50;
int wd = 15;
int ht = 10;
}

void draw()

{
rect(x, y, wd, ht) ;
pl‘in'ﬂn(x + [1] [1] + y + [1] [1] + wd + 1] 1] + h1,);

}

Le®’s returw to- the code. Look at the setup() functiown.
The four lines witiv red text are variable declaratiowns.
Any time yow see:

data-type variable-name;
ov

data-type variable-name = some-value;

Yow are looking at o varialble declaratiow. Since the
fouwr lines withv red text are within the braces of the
setup() function, they are declaring local varialles
owned by the setup functiow.

AT this point in the executiow of the program, there are
eightt variables:

* fouwr global varialles named x, y, wd, ht

* four local varialbles naomed x, y, wd, and ht
Processing is very comfortalble with thiy situatiow. It
works with the local varialley if they exist. This code
alers the values of the four local variables and does

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set #8 Page 7

not do- anything with the global variables. Their values
remwinv unchanged so-they are gero-

One very important thing to- remember iy this row from
our comparisovw grid:

Item System Global Function Definition Local
Variables | Variables Arguments Variables
How long As long as | As long as the Only as long as the | Only as long as the function
do they the program is function is being is being executed by
“live”? program running executed by Processing.
is running Processing.
When the execution of the
When the function is complete, the
execution of the memory used by the
function is argument is returned to the
complete, the operating system for reuse.

memory used by

the argument is

returned to the

operating system
for reuse.

These four local variables exist ondy asy long as it takes
Processing to- execute all of the “stuff’ our code
requirey it to- execute in the setup() function. Once the
setup() functiow vy finished, the four local variables, x,
y, wd, and ht are destroyed leawving only the four
unchanged global variables.

The code showw above caw be fixed by removing the
type name float from the four lines of code that are
attempting to- initiolige the variables:
int x, y, wd, ht;

void setup()

{

size(400, 400);
£ill(0);

x = 100;
y = 50:;

wd = 15;
ht = 10;

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set #8 Page 8

Thiy is very subtle and yow need to- be aware of it. We
will revisit these ideas agaiv ivw the course.

Whew do- I wse o local varialble and whew do- 1
wse v global variable?
Part of the avnswer is rather easy to- explain:

If the value of the variable iy needed in more thaw
one functiown, it probably should be a global varialle.

This part iy not that simple: For some cases, if the
value of the variable iy wsed only withinw one functiow,
it canw be v local variable.

The fuggy part gely into efficiency. Iw aw intro- course,
we wsually do- not worry about efficiency. However, we
are not a typical intro- course. We will do- some
animationw and if we are not careful, we caw write
code that doesy not allow for smooth, fast, pleasant
animatiow. Jim will show yow aw example of this inv
clovss.

The processor in the computer caw oy do- so- much iv av
finite amount of time. Processing hay a defadt frame
rate of 60 frames per second. This rate iy possible only

Uf the processor caw do- all we tell it to- inv av slice of time
that iy 1/60% of o second or less. If we tell it to- do- more
thaw it canw accomplishv inv 1/60™ of o second, the
animatiow rate slowy doww. Each line of code takes
time. If we canw eliminate o line of code, we reduce the
amount of work the processor has to- do- in the 1/60™ of
v second for each frame and X caonw contribute to- v
smoother, more pleasant animatiow.

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set #8 Page 9

Suppose we hawe a functiow that computes the same
value repeatedly for each animatio:

void draw()

{
ellipse(width/2, height/2, frameCount%width,

frameCount%height);
}

Inw this example, the code draws aw ellipse that grows
from a very small circle to- o large circle. The
moavimunwy diovmeter iy the width or height of the window
(the window s square).

The circle iss alwayy located at the center of the circle
so- the two- argumentys inw greevw evaluate to- the same
value for every executiow of the draw() functiow.

However, since the value of frameCount changes for each
executiow of the draw() functiown, the valuey of the blue
argumenily are constontly changing. We could save
some executiow time for each executiow of the draw()
functiow if we declared global variables that store the
values of half of the width and half of the height. Note
that we could not measure the time we are saving iw
this simple example but we would safe o very small
fractiow of o second.

int halfWidth, halfHeight:
void setup()
{
size(400, 400):
fill(255).
halfWidth = width/2;
halfHeight = height/2;
}
void draw()
{
ellipse(halfWidth, halfHeight,
frameCount%width, frameCount’%height):

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set #8 Page 10

Ay yow write your code, yow should begivw to- develop aw
“eye” for redundoant or wnwneeded code.
Here iy v commow novice example:

void setup()
{

size(400, 400);
}
void draw()
{

background(0):

smooth():

fill(255, 0, 0):

rect(frameCount%width, height/2, width*.1, height*.2);
}

There are o number of redundant or uwnwneeded lines of
code iw the draw() functiow. See if yow canw find themw
before reading further...

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set #8 Page 11

tvery executiow of draw() doesy this:
background(0):
smooth():
fill(255, 0, 0):
rect(frameCount%width, height/2, width*.1, height*.2):

This iy v better wavy to- code draw():

background(0):
rect(frameCount%width, halfHeight, rectWidth, rectHeight):

The smooth() functiow needs to- be called only one time -
do- thiy in setup();

Since there is only one rect and it isy alwayy filled with
red, fill() needs to- be called ovly one time.
- do- this in setup();

If there are multiple recty or ellipses of different color,
thiy strategy will not work.

Declare global variables and initialze them ivw setup()
to- be half of the height, 10% of the width and 20% of the
height.

int halfHeight:
float rectWidth, rectHeight:
void setup()

{
size(400, 400);
fill(255):
halfHeight = height/2:
rectWidth = .1*width;
rectHeight = .2*height:
}
void draw()
{
background(0):
smooth():
fill(255, 0, 0);
rect(frameCount%width, halfHeight, rectWidth, rectHeight):
}

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set #8 Page 12

This type of coding may never affect your code but it
makesy your code muciv easier to- read and edik.

Declaring functiowsy that are not void iw our
code:

Thus for we howe writtevw ovly void functions. Many of
yow asked what void meant. We told yow that it meant
that the functiow “refturny nothing”. Not a very

satisfying answer. Maybe we canw add more depthv to-
that answer.

Here iy the structure of o functiow definitiow:

return type name open-paren argument-list close-paren
open-brace

stuff-to-do
close-brace

and aw example
void drawInitials(int x, int y, int wd, int ht)

{
fill(0):
: c ..

The functiow drawlnitials() returnsy no- values that the
program cow wse. It drawsy owr initiods. So- we say that

since € returngy no- values, it is o void functiow.

Here iy another functiow definition:
int doubleArgumentValue(int number)

{

return number*2;
}
We would probalbly never write this as o functiow since
doubling the value of o varialble iy very easy - just
multiply i€ by 2.

But it does show how we caw define a functiow to-
compute and returw the value computed.

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set #8 Page 13

The call could look like any of these:
text(doubleArgumentValue (42 , 100, 100)):
or

int x = 42;

int doubleX = doubleArgumentValue(x):
or

int x = 42;

int y = 24;

rect(doubleArgumentVaule(x),
doubleArgumentVaule(y), x, y):

Using functiony like this is ideal for complex
arithmelic expressiony that are used mulliple times inv
your code. Write the expression one time inv o functiow
and call the functionw where yow need the value.
Another advantage vy that if yow find that yow coded
the expressiovw incorrectly, yow only have to- make a
single correction.

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

