
Notes from the Boards Set #8 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

1

Variables – One More (but not the last) Time with
feeling…

All variables have the following in common:

• a name
• a type (int, float, …)
• a value
• an “owner”

We can describe variables in terms of:

• who owns them (Processing or us)
• who declares them
• who initializes them
• who changes them
• who can use them
• how long the actually “live” during the execution

of our program.

Here is what we have talked about thus far:
Item System

Variables
Global
Variables

Who owns them? Processing We do
Who declares them? Processing We do
Who initializes
them?

Processing Processing to a default
initial value:
 int to zero
 float to zero.zero
 char to a null
 character
 boolean to false
If these values are not
useful to us, we have to
initialize the variable
to values that are
useful and we should do
this in the setup()
function.

Who changes them? Processing We do
Who can use them? Both Processing

and us
We do

Notes from the Boards Set #8 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

2

How long do they
“live”?

As long as the
program is
running

As long as the program
is running

We need to expand this list with two additional
categories: function definition arguments and local
variables. We have to do this because you can get into
trouble (your code will not run) through no fault of
your own (until you read this…). Some of you may
have already hit this problem. From the past:
System variables are just that – variables maintained
by Processing. We can use them but the code that
declares and initializes them is hidden from us.
Global variables are declared in our code and must be
outside any visible set of braces. The following code
has four global variables marked in red:

int i;
void setup()
{
 size(400, 400);
 fill(0);
}
float f;
void draw()
{
 rect(0, 0, width, height) ;
}
char c;
void keyPressed()
{
 println("Value of variable i is " + i);
 println("Value of variable f is " + f);
 println("Value of variable c is " + c);
 println("Value of variable b is " + b);
}
boolean b;

Global variables do not have to be declared at the top
of the code but for 15-102, we prefer that you do
declare them at the top. It makes helping you easier
for us.

The code above produces this output:

Notes from the Boards Set #8 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

3

Value of variable i is 0
Value of variable f is 0.0
Value of variable c is �
Value of variable b is false

The four global variables are named i, f, c, and b.
They are global because they are declared outside the
braces of the three function definitions. Note the
initial values provided by Processing. The char (short
for character) variable is initialized to a “special”
null character that does not print anything so we do
not “see” it. Word put the red box in this document to
indicate that “something” is there.

Function Definition Arguments are similar to system
and global variables in that they have a name, type,
value, and an owner. The differences between the
function argument and the system and global
variables can be seen in the other items in our list:
Item System

Variables
Global
Variables

Function Definition
Arguments

Who owns
them?

Processing We do The function does

Who declares
them?

Processing We do The function does in
the function’s header

Who initializes
them?

Processing Processing to a defined
initial value:
 int to zero
 f loat to zero.zero
 char to space
 boolean to false
If these values are not
useful to us, we have
to initialize the
variable

Processing initializes
them by copying the
value of the argument
in the function call
into the function
definition argument.

Who changes
them?

Processing We do Only this function can
change them.

Who can use
them?

Both Processing
and us

We do Only this function can
use them.

How long do
they “live”?

As long as the
program is
running

As long as the program
is running

Only as long as the
function is being
executed by
Processing. When the
execution of the
function is complete,
the memory used by
the argument is
returned to the
operating system for
reuse.

Notes from the Boards Set #8 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

4

It is very important to remember two things:
1. The initial value comes from the argument in the

function call
2. The argument exists only while the function is

being executed.

Local variables are very similar to function definition
arguments. Once again, we return to our list to find
the differences:
Item System

Variables
Global
Variables

Function Definition
Arguments

Local
Variables

Who owns
them?

Processing We do The function does The function does

Who
declares
them?

Processing We do The function does
in the function’s
header

We do between the braces of
the function

Who
initializes
them?

Processing Processing to a
defined initial
value:
 int to zero
 f loat to
zero.zero
 char to space
 boolean to
false
If these values
are not useful
to us, we have
to initialize the
variable

Processing
initializes them by
copying the value
of the parameter
in the call into the
function argument.

We have to.

If we do not initialize them
before we attempt to use
them, Processing will not
compile our code

Who
changes
them?

Processing We do Only this function
can change this
argument

Only this function can change
this local variable

Who can
use
them?

Both
Processing
and us

We do Only this function
can use this
argument

Only this function can use
this local variable

How long
do they
“live”?

As long as
the
program
is running

As long as the
program is
running

Only as long as the
function is being
executed by
Processing. When
the execution of
the function is
complete, the
memory used by
the argument is
returned to the
operating system
for reuse.

Only as long as the function
is being executed by
Processing. When the
execution of the function is
complete, the memory used
by the argument is returned
to the operating system for
reuse.

If we declare a variable within the braces of a
function, that variable is a local variable. This point
is very important. Forgetting it can cost you a great
deal of time.

Notes from the Boards Set #8 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

5

Here is how forgetting this can get you into trouble:

int x, y, wd, ht;
void setup()
{
 size(400, 400);
 fill(0);
 int x = 100;
 int y = 50;
 int wd = 15;
 int ht = 10;
}

void draw()
{
 rect(x, y, wd, ht) ;
 println(x + " " + y + " " + wd + " " + ht);
}

This code compiles and runs and produces this output
in the window:

We are expecting to see a black rectangle located 100
pixels to the right, 50 pixels down with a width of 15
pixels and an height of 10 pixels. But we see nothing.
A clue comes from the println() function call. Here is
what we see in the console window:

Notes from the Boards Set #8 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

6

The values of the global variables are all zero. So
what happened???

int x, y, wd, ht;
void setup()
{
 size(400, 400);
 fill(0);
 int x = 100;
 int y = 50;
 int wd = 15;
 int ht = 10;
}

void draw()
{
 rect(x, y, wd, ht) ;
 println(x + " " + y + " " + wd + " " + ht);
}

Let’s return to the code. Look at the setup() function.
The four lines with red text are variable declarations.
Any time you see:

 data-type variable-name;
or

 data-type variable-name = some-value;

You are looking at a variable declaration. Since the
four lines with red text are within the braces of the
setup() function, they are declaring local variables
owned by the setup function.

At this point in the execution of the program, there are
eight variables:

• four global variables named x, y, wd, ht
• four local variables named x, y, wd, and ht

Processing is very comfortable with this situation. It
works with the local variables if they exist. This code
alters the values of the four local variables and does

Notes from the Boards Set #8 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

7

not do anything with the global variables. Their values
remain unchanged so they are zero.

One very important thing to remember is this row from
our comparison grid:
Item System

Variables
Global
Variables

Function Definition
Arguments

Local
Variables

How long
do they
“live”?

As long as
the
program
is running

As long as the
program is
running

Only as long as the
function is being
executed by
Processing.

When the
execution of the
function is
complete, the
memory used by
the argument is
returned to the
operating system
for reuse.

Only as long as the function
is being executed by
Processing.

When the execution of the
function is complete, the
memory used by the
argument is returned to the
operating system for reuse.

These four local variables exist only as long as it takes
Processing to execute all of the “stuff” our code
requires it to execute in the setup() function. Once the
setup() function is finished, the four local variables, x,
y, wd, and ht are destroyed leaving only the four
unchanged global variables.

The code shown above can be fixed by removing the
type name float from the four lines of code that are
attempting to initialize the variables:

int x, y, wd, ht;
void setup()
{
 size(400, 400);
 fill(0);
 x = 100;
 y = 50;
 wd = 15;
 ht = 10;
}
. . .

Notes from the Boards Set #8 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

8

This is very subtle and you need to be aware of it. We
will revisit these ideas again in the course.

When do I use a local variable and when do I
use a global variable?
Part of the answer is rather easy to explain:
 If the value of the variable is needed in more than
one function, it probably should be a global variable.

This part is not that simple: For some cases, if the
value of the variable is used only within one function,
it can be a local variable.

The fuzzy part gets into efficiency. In an intro course,
we usually do not worry about efficiency. However, we
are not a typical intro course. We will do some
animation and if we are not careful, we can write
code that does not allow for smooth, fast, pleasant
animation. Jim will show you an example of this in
class.

The processor in the computer can only do so much in a
finite amount of time. Processing has a default frame
rate of 60 frames per second. This rate is possible only
if the processor can do all we tell it to in a slice of time
that is 1/60th of a second or less. If we tell it to do more
than it can accomplish in 1/60th of a second, the
animation rate slows down. Each line of code takes
time. If we can eliminate a line of code, we reduce the
amount of work the processor has to do in the 1/60th of
a second for each frame and it can contribute to a
smoother, more pleasant animation.

Notes from the Boards Set #8 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

9

Suppose we have a function that computes the same
value repeatedly for each animation:
void draw()
{
 ellipse(width/2, height/2, frameCount%width,
 frameCount%height);
}
In this example, the code draws an ellipse that grows
from a very small circle to a large circle. The
maximum diameter is the width or height of the window
(the window is square).

The circle is always located at the center of the circle
so the two arguments in green evaluate to the same
value for every execution of the draw() function.

However, since the value of frameCount changes for each
execution of the draw() function, the values of the blue
arguments are constantly changing. We could save
some execution time for each execution of the draw()
function if we declared global variables that store the
values of half of the width and half of the height. Note
that we could not measure the time we are saving in
this simple example but we would safe a very small
fraction of a second.
int halfWidth, halfHeight;
void setup()
{
 size(400, 400);
 fill(255);
 halfWidth = width/2;
 halfHeight = height/2;
}
void draw()
{
 ellipse(halfWidth, halfHeight,
 frameCount%width, frameCount%height);
}

Notes from the Boards Set #8 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

10

As you write your code, you should begin to develop an
“eye” for redundant or unneeded code.
Here is a common novice example:
void setup()
{
 size(400, 400);
}
void draw()
{
 background(0);
 smooth();
 fil l (255, 0, 0);
 rect(frameCount%width, height/2, width*.1, height*.2);
}
There are a number of redundant or unneeded lines of
code in the draw() function. See if you can find them
before reading further…

Notes from the Boards Set #8 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

11

Every execution of draw() does this:
 background(0);
 smooth();
 fil l (255, 0, 0);
 rect(frameCount%width, height/2, width*.1, height*.2);

This is a better way to code draw():
 background(0);
 rect(frameCount%width, halfHeight, rectWidth, rectHeight);
The smooth() function needs to be called only one time –
do this in setup();

Since there is only one rect and it is always filled with
red, fill() needs to be called only one time.
- do this in setup();

If there are multiple rects or ellipses of different color,
this strategy will not work.

Declare global variables and initialze them in setup()
to be half of the height, 10% of the width and 20% of the
height.
int halfHeight;
float rectWidth, rectHeight;
void setup()
{
 size(400, 400);
 fil l (255);

 halfHeight = height/2;
 rectWidth = .1*width;
 rectHeight = .2*height;
}
void draw()
{
 background(0);
 smooth();
 fil l (255, 0, 0);
 rect(frameCount%width, halfHeight, rectWidth, rectHeight);
}

Notes from the Boards Set #8 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

12

This type of coding may never affect your code but it
makes your code much easier to read and edit.

Declaring functions that are not void in our
code:
Thus far we have written only void functions. Many of
you asked what void meant. We told you that it meant
that the function “returns nothing”. Not a very
satisfying answer. Maybe we can add more depth to
that answer.

Here is the structure of a function definition:

return type name open-paren argument-list close-paren
open-brace
 stuff-to-do
close-brace

and an example
void drawInitials(int x, int y, int wd, int ht)
{
 fil l (0);
 . . .
}
The function drawInitials() returns no values that the
program can use. It draws our initials. So we say that
since it returns no values, it is a void function.

Here is another function definition:
int doubleArgumentValue(int number)
{
 return number*2;
}
We would probably never write this as a function since
doubling the value of a variable is very easy – just
multiply it by 2.

But it does show how we can define a function to
compute and return the value computed.

Notes from the Boards Set #8 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

13

The call could look like any of these:
 text(doubleArgumentValue (42 , 100, 100));
or
 int x = 42;
 int doubleX = doubleArgumentValue(x);
or
 int x = 42;
 int y = 24;
 rect(doubleArgumentVaule(x),
 doubleArgumentVaule(y), x, y);

Using functions like this is ideal for complex
arithmetic expressions that are used multiple times in
your code. Write the expression one time in a function
and call the function where you need the value.
Another advantage is that if you find that you coded
the expression incorrectly, you only have to make a
single correction.

