Notes from the Boards Set# 7 Page 1

Yes, this stuff is also- onw the exam.
Know it well.
Bring youwr questions to- closs.

Types of Datw:

Prograwmming inv15-102 has and will continute to- require ws to-
store datw for use by owr programs. Processing comes from the
“factory” already “travined’” to- store and work with 8 types of
dato: 4 types for integer values, 2 types for fractional values, 1
type for chawacters, and 1 type to- storve the valuestrue and false.
These 8 “Duilt-iw’ types awe oftew referred to-as “primitive types’.

For our class we will use o av regulow basis ovly four of these:
int, float, char, andboolean. Ow av very rawe occasions we will use
another type named long. We will explorve the differences and
similawities to-these types later after yow hawe some experience
using thew .

In cose yow hawe forgotten or hawe not read the eawlier notes
here iy o brief review of the typesint and float.

The type; int is used for storing whole ov integer numbers. There
is v imited range of values that we cowv store using variables
of typeint. This range iy roughly negative 2.7 billiow to-positive
2.7 billion. Yow may be thinking that this is more thoww enoughv
but it may not always be sufficient.

The type float is wsed for fractionad nuwmbers such as 3.14159.
There iy also- v lLimited range of values that we cowv store withv
vawialbles of type float but, like int, the range is usually

The thing to- remember about float values is that they are
approximations. Round-off ervors occur for some fractional
values. The common examples are the fractional values 1/3
and 2/3. These hawve no-exact decimol equivadent. In15-102
we wsually do- not worry about thisg type of ervor.

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set# 7 Page 2

If we declawe av vawiable that is not inside o functiows braces,
this variable con be described as av global variable because it
canv be wsed by the entire progrowm.

Global variables of typeint are initialiged to-zero by Processing.
Global vawriables of type float awe initiclized to-zero point zero by
Processing.

Rules of the Road for Using int and float Vawriables:
Yow cov use auvint value as v substitute for afloat value. This
will compile and wovk proberly invProcessing:

float x = 42;

int number = 12;

float y = number;
Processing just adds o .0 to-the end of theint values so-the result
of the thwee lines of code above s that v has o value of 42.0 and
y has v value of 12.0.

Yow cavwnot use avfloat value as v substitute for awvint value
without some extrow syntax.
The following lines of red. code awe legal and will not compile
int x = 42.1;
float number = 12.5
int y = number;
If this were legal inv Processing, what would happew to-the
fractional paurty invthe first and third line of code? They would
belost. Such avloss of datow is not acceptable in most
prograwuming languages without extra syntax.

In cose yow awre wondering what the extrow syntaw is; it would
float number = 12.5
int y = int(humber);
Processing has o function noumedint() that will take afloat as
a parameter and returnw awvint value that is truncated (NOT
ROUNDED).

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set # 7 Page 3

Most of the graphics functions in Processing takeint and float
values. However, the system vawriables height aond widtihvareint
vawiables.

Arithmetic and Types

The rule is foivly straightforwond

int + int = int float + float = float
int - int = int float - float = float
int * int = int float * float = float
int / int = int float / float = float
int % int = int float % float = float

But what happeny if we used mixed types with these operators.
Again the rule iy straightforword:

int + float = float float + int = float
int - float = float float - int = float
int * float = float float * int = float
int / float 2 float float / int =& float
int % float = float float % int = float

Inthis mired type mode of awithunetic, the result of the
evaluation becomes a float at the point the evaluationw irnwolves
the float. Thus this expression:
7+3-20 +4
evaluates like this:
7+3-20 + 4

10-20 + 4

80 + 4
12.0

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set # 7 Page 4

We need to-look at the division operator [forint values because
we cawv get into-trouble and not understand why.
These awve fairly easy:

8/4

12/ 3

The resudty avre 2 and 4 respectively. But what about this one?
2/5

Remember that if bothv operands areint, the result must be ivvint
So-what is the value?

The answer i50. That's right, zero. The /[operator for two-int
values resudty invthe quotient. The remainder iy Lost.

Yow need to-know this because comv cause yow grief (as it has
done to- several of yow...). Let’s assuume yow want to- use two-
thirds of the widthv of the window as the width of av rectongle.
This works just fine:

rect(x, y, width*.66, height*.2);
What about this?

rect(x, y, width*2/3, height*.2);
It works just fine.
What about this?

rect(x, y, 2/3*width, height*.2);
It compiles and rung but yow will not see- much. Look closely at
the third pawrameter:

2 / 3 * width
Let’s trace the evaluatiov

2 / 3 * width

0 * width
0

The ovder of operations of division and multiplicatiow iy left to-
right. The furst evaluatiow ig to-divide 2 by 3. Since botiv
operonds awreint values; the result is the quotient, which, for 2/3
iszero. Multiplying the widthv by zero- resudty invov rect withv v
widthv of zevo-pirels. As stated above; this runs but yow do-not
see very much onwthe screen. This particulow naustiness is why

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set # 7 Page 5

we used muditiplication to- get different fractions of the widthv
and height ovthe days that were focused o homework #2.

What isthe % operator - nothing has beew said about it:

The % operator has nothing to-do-withypercentages. It is also-av
dvision operator. While it wovks withvfloats, we rowely ever seevv
it wsed withvthem. Inv15-102 we will use it exclusively withvint
values:

Wait v minute - yow may be thinking that we aliready hawve av
division operator which isthe /
and yow awe corvrect so-

2/5 20
resulty invthe quotient whichv iy 0. What about the remainder?
The % operator produces the remainder. So:

2%5 22
resulty in the remainder which is2

Whew we use the % operator, we get the remainder of
division. Thig operator iy oftenw called the “mod”
operator. 2 % 5 is frequently read oy “2 mod 5”

If yow do- not remember this, do- the division the way
yow first learned to- divide:

5)2

givey uy this:
O_r 2
5)2
0

2
The quotient is zero and the remainder iy 2

If we use the % operator ow awint value, the result will
alwayy be iv the range of 0 to- one less thaw the value
of the divisor

anyNumber % 99 = [0 .. 98]

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set # 7 Page 6

anyNumber % width = [0 .. one less than the width]

Oh Great!! More mindless triviaw about programuming - just
whew or why would I ever use this???

It twng out that we canv use the % operator to-keep any nuwmber
within av specific range:

There awre different ways we conv get numeric input into- our
programs:
1. awithwnetic
x = x *100;
2. x equaly user input from the keyboowrd or mouse
3. x = awrandom value retuwrned by therandom() function

Suppose we hawve to-keep the x value of the center of av circle
between 0 and 100 regowdless of the value of the vowiable x ?

We canv use the % operator to-do-this.

ellipse(x%100, y, height*.01, width*.01);
The first parameter will awavys be between O and, 99. It will
never be 100 or larger because the % operator returns the
remainder. And the remainder ofx % 100 is always betweernv
zevo-ond one less thow the divisor which i 100.

Suppose we hawe v window that is 300 pixels wide and we want
to-keep av circle invthe middle third of the window - betweesv
100 and 200 pirels.

This problem introduces owv ideaw we call the “offset.” Instead
of generating a value betweew zevo-and 100, we need av value
between 100 and 200. The nuwmber of values in the ronge wes
need to- maintair iy 100:

(200 - 100).
One way to-do-this is to- generate a value between O and 100
oand thew add 100 to-the result. This added value of 100 is the
offset. By generating o value between 0 and 100 and thew

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set # 7 Page 7

adding 100 to-the resudt, we are assured of a final result
between 100 and 200. Note that we mavy be off by one pixel ovw
either or bothvends. For some computing applications (such as
landing o aivblone or performing hip replacement surgery)
this is not acceptable: For 15-102, it usually does not maiter.

Here is how our code might look:
x = user-input-that-may-not-be-in-the-proper-range:

ellipse((x % 100) + 100, y, height*.01, width*.01);
Let’s assume that the user entered t value 213 for the vawriable
x from the keyboowrd; Here iy the evaluation:

ellipse((x % 100) + 100, y, height*.01, width*.01);

ellipse((213 % 100) + 100, y, height*.01, width*.01);

ellipse((13) + 100, y. height*.01, width*.01);

ellipse(113, y. height*.01, width*.01);

The % operator used in this moarmner keeps the circle in the
middle third of the window.

Wait v minute - yow used ov magic nwmber for the offset..
Ok - we couv cure that with this code:

ellipse((x % (width/3)) + 100, y, height*.01, width*.01);

Note that the parentheses con get out of hand very quickly. We

strongly suggest yow type bothvthe operv and closing parentheses
and thes go-back inside of them to-key in the expressio.

InClosing:
This is about as complex as 15-102 gety invterm of awithwmetic.
However, this iy very impovtant.

The correct evaluatiow of expressions inwolving float and, int
values withv all five operators is very importont to- yow inv your
projecty AND your exams.

Work throughv the clays code and bring your questions
to- clasy iUf yow are not sure how thiy stuff works.

Thiy iy VERY important,

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set # 7 Page 8

Processing provides o “cheap'” way to- use animatiow inw
ouwr code. Frow last week we know that Processing will
execute a setup() functiow if we howe ow iw the code. It
will be the first functiow that Processing executes.

We also- know that if we hawve avdraw() functiow inw the
code, Processing executes it whew the executiow of
setup() is finished.

This iy ondy partially true. Processing executes the
draw() functiow over and over until we stop it either by
closing the window or calling anw API functionw nawmed
noLoop() to stop if. Each newly draww versiow of the
window vy called o frame.

If we do- nothing special, the new frame is draww over
top of the previows frame. This caw produce some
interesting results. Read ow...

Along with the systemw varialles width and height,
Processing tracks the mouwse location with systew
variablesy named mouseX, mouseY, pmouseX and pmouseY.
The variablesy mouseX and mouseY are the locatiow of the
mouwse ivw thiy frame. The varialbles pmouseX and pmouseY
were the locatiow of the mouse in the previouy frame.

Using the following code:
void setup()
{
size(400, 400);
stroke(255, 0, 0):
strokeWeight(5);
background(255):
}

void draw()

{

line(pmouseX, pmouseY, mouseX, mouseY):

)
here iy the window after multiple iterations of the

1
by cheap, we mean easy... da’ moose

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set# 7 Page

draw() functionw have produced multiple frames:

sketch_sep07a

Inw this code each new frame iy draww ow top of the
previouws frame. One iteratiow of the draw() functiow
drawy o line fromw the positiow of the mouse inw the
previows frame to- the mouse’s current positiow.

If we modify the code to- draw o back point at the
mouwse’ sy locationw ivw each frame lUike this:
void draw()

{

stroke(255, 0, 0):

strokeWeight(2);

line(pmouseX, pmouseY, mouseX, mouseY):
stroke(0):

strokeWeight(6);

point(mouseX, mouseY):

}
we get this result:

sketch_sep07a

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set# 7 Page 10

Owr List of systemw variables includes:
* width
* height
* mouseX
* mousey
* pmouseX
* pmouseY

We caw add two- more:

+ frameRate which iy the number of frames disployed
eachv second or the number of times the draw()
functiow iy executed each second.

¢ frameCount whichv is the total count of frames
displayed thus for.

There iy aframeRate() function that allows us to- alter the
frameRate. This is confusing but we hawe to-live withv it. Look
up the-frameRate()function in the APIL.

Here iy another sample:
void draw()

{
line(width/2, height/2, mouseX, mouseY);

}

sketch_sep07a

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set# 7 Page 11

For some of ouwr drawings, we will not want to- see the
old frame whew the new frame iy draww. We will want
Just the new frame all by itself. Let’s see why.

Here iy Jim/'y target drawing code that uses the
frameCount as the kv coordinate value of the target to-
move the target from left to- right ow the screenw. Thiy
versiow drows the new frame ow top of the old one withv
the old one visible:

endcode0121

Each new frame drawy the target one pixel further to-
the right. The new frame iy draww ow top of the
previouws frame and this resulty in the black “smear”
extending to- the left edge. Here iy the code:

void draw()

{
drawTarget(frameCount%width, 20, 20, 10);

)
The smear comey from the black stroke of the lartest

ellipse in the target. If Jim wanty to- avoid thisy
smearing, he needs to- opaquely cover the previous
frame. Unfortunately there is no-opaqueCover()
functiow iw Processing so- he doesy what we do- whenw we
paint ouwr roow. We do not remove old paint whew we
paink, we just paint over it. So; Jum canwpaint over it by
using thebackground() function:

void draw()

{
background(200, 200, 0):
drawTarget(frameCount%width, 20, 20, 10);

}
The new line of code covers the old frame with aw
opaque yellow background and allows the new target
to- be draww ow av cleaw yellow background:

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set# 7 Page 12

It iy difficult to- show the animatiow iw print but the
target begaw onw the left side of the window and moved
acrosy to-the right. The MHack smeoar iy gone.

There iy v middle ground to- explore. We have seenw av
long smear and no- smear. What if we want a Liktle bik
of smearing to- give the impression of movement. The
effect vy showw below:

80 endcade0121

This effect caw be created by wsing what iy called the
alpho value or the alpho choarnel travslucence. Here
iy the code that creates thiy effect:

void draw()
{

fill(200, 200, 0, 10);

rect(0, O, width, height):

drawTarget(frameCount%width, 20, 20, 10);
}

Notice that the call of the fill() functionw hay o fourthv
argument. Thiy is the alpha value. This value caw be
between 0 and 255. The value of 10 creates the degree

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

Notes from the Boards Set # 7 Page 13

of tramsparency that allowy us to- see o part of the
previows frame.

What iy happening here is that each new frame beging
with the drawing of o yellow rectangle? that coversy the
entire screew. This rectangle iy not totally opaque. It
hoy v small amount of transparency or translucence.
The drawing of the multiple frames with thisy small
amount of transparence eventually covers the older
frames and leavey oy av small percentage of the most
recent framey vigible. This createy the smearing which
givey the impressionw of movement.

Use of the alphw value takes o Lot of experimenting.
Here iy the saome program afier several transity of the
targel acrosy the window:

80 endcode0121

The use of yellow as the background and black asy the
stroke around the target resultsy iv av smear that iy
never completely erased.

> As far as we know, background() is always opaque even if you use an alpha
argument. We have tried but it does not work. If you get it to work, please let us know.

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

