
Notes from the Boards Set # 7 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

1

Yes, this stuff is also on the exam.
Know it well.
Bring your questions to class.

Types of Data:
Programming in 15-102 has and will continue to require us to
store data for use by our programs. Processing comes from the
“factory” already “trained” to store and work with 8 types of
data: 4 types for integer values, 2 types for fractional values, 1
type for characters, and 1 type to store the values true and false.
These 8 “built-in” types are often referred to as “primitive types”.

For our class we will use on a regular basis only four of these:
int, float, char, and boolean. On a very rare occasions we will use
another type named long. We will explore the differences and
similarities to these types later after you have some experience
using them .

In case you have forgotten or have not read the earlier notes
here is a brief review of the types int and float.

The type, int is used for storing whole or integer numbers. There
is a limited range of values that we can store using variables
of type int. This range is roughly negative 2.7 billion to positive
2.7 billion. You may be thinking that this is more than enough
but it may not always be sufficient.

The type float is used for fractional numbers such as 3.14159.
There is also a limited range of values that we can store with
variables of type float but, like int, the range is usually
sufficient.

The thing to remember about float values is that they are
approximations. Round-off errors occur for some fractional
values. The common examples are the fractional values 1/3
and 2/3. These have no exact decimal equivalent. In 15-102
we usually do not worry about this type of error.

Notes from the Boards Set # 7 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

2

If we declare a variable that is not inside a function’s braces,
this variable can be described as a global variable because it
can be used by the entire program.

Global variables of type int are initialized to zero by Processing.
Global variables of type float are initialized to zero point zero by
Processing.

Rules of the Road for Using int and float Variables:
You can use an int value as a substitute for a float value. This
will compile and work properly in Processing:
 float x = 42;
 int number = 12;
 float y = number;
Processing just adds a .0 to the end of the int values so the result
of the three lines of code above is that x has a value of 42.0 and
y has a value of 12.0.

You cannot use a float value as a substitute for an int value
without some extra syntax.
The following lines of red code are illegal and will not compile
 int x = 42.1;
 float number = 12.5
 int y = number;
If this were legal in Processing, what would happen to the
fractional parts in the first and third line of code? They would
be lost. Such a loss of data is not acceptable in most
programming languages without extra syntax.

In case you are wondering what the extra syntax is, it would
look like this:
 float number = 12.5
 int y = int(number);
Processing has a function named int() that will take a float as
a parameter and return an int value that is truncated (NOT
ROUNDED).

Notes from the Boards Set # 7 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

3

Most of the graphics functions in Processing take int and float
values. However, the system variables height and width are int
variables.

Arithmetic and Types
The rule is fairly straightforward
int + int int
int - int int
int * int int
int / int int
int % int int

float + float float
float - float float
float * float float
float / float float
float % float float

But what happens if we used mixed types with these operators.
Again, the rule is straightforward:
int + float float
int - float float
int * float float
int / float float
int % float float

float + int float
float - int float
float * int float
float / int float
float % int float

In this mixed type mode of arithmetic, the result of the
evaluation becomes a float at the point the evaluation involves
the float. Thus this expression:
7 + 3 – 2.0 + 4
evaluates like this:
7 + 3 – 2.0 + 4
 10 – 2.0 + 4
 8.0 + 4
 12.0

Notes from the Boards Set # 7 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

4

We need to look at the division operator / for int values because
we can get into trouble and not understand why.
These are fairly easy:
8 / 4
12 / 3
The results are 2 and 4 respectively. But what about this one?
2 / 5
Remember that if both operands are int, the result must be in int
So what is the value?

The answer is 0. That’s right, zero. The / operator for two int
values results in the quotient. The remainder is lost.

You need to know this because can cause you grief (as it has
done to several of you…). Let’s assume you want to use two
thirds of the width of the window as the width of a rectangle.
This works just fine:
 rect(x, y, width*.66, height*.2);
What about this?
 rect(x, y, width*2/3, height*.2);
It works just fine.
What about this?
 rect(x, y, 2/3*width, height*.2);
It compiles and runs but you will not see much. Look closely at
the third parameter:
 2 / 3 * width
Let’s trace the evaluation:
 2 / 3 * width
 0 * width
 0

The order of operations of division and multiplication is left to
right. The first evaluation is to divide 2 by 3. Since both
operands are int values, the result is the quotient, which, for 2/3
is zero. Multiplying the width by zero results in a rect with a
width of zero pixels. As stated above, this runs but you do not
see very much on the screen. This particular nastiness is why

Notes from the Boards Set # 7 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

5

we used multiplication to get different fractions of the width
and height on the days that were focused on homework #2.

What is the % operator – nothing has been said about it:
The % operator has nothing to do with percentages. It is also a
division operator. While it works with floats, we rarely ever seen
it used with them. In 15-102 we will use it exclusively with int
values.

Wait a minute – you may be thinking that we already have a
division operator which is the /
and you are correct so
 2 / 5 0
results in the quotient which is 0. What about the remainder?
The % operator produces the remainder. So:
 2 % 5 2
results in the remainder which is 2

When we use the % operator, we get the remainder of
division. This operator is often called the “mod”
operator. 2 % 5 is frequently read as “2 mod 5”

If you do not remember this, do the division the way
you first learned to divide:

 5) 2

gives us this:
 _ 0_r_2
 5) 2
 0
 2
The quotient is zero and the remainder is 2

If we use the % operator on an int value, the result will
always be in the range of 0 to one less than the value
of the divisor
 anyNumber % 99 [0 .. 98]

Notes from the Boards Set # 7 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

6

 anyNumber % width [0 .. one less than the width]

Oh Great!! More mindless trivia about programming – just
when or why would I ever use this???
It turns out that we can use the % operator to keep any number
within a specific range.

There are different ways we can get numeric input into our
programs:

1. arithmetic
x = x * 100;

2. x equals user input from the keyboard or mouse
3. x = a random value returned by the random() function

Suppose we have to keep the x value of the center of a circle
between 0 and 100 regardless of the value of the variable x?

We can use the % operator to do this.
 ellipse(x%100, y, height*.01, width*.01);
The first parameter will always be between 0 and 99. It will
never be 100 or larger because the % operator returns the
remainder. And the remainder of x % 100 is always between
zero and one less than the divisor which is 100.

Using an “offset”
Suppose we have a window that is 300 pixels wide and we want
to keep a circle in the middle third of the window – between
100 and 200 pixels.

This problem introduces an idea we call the “offset.” Instead
of generating a value between zero and 100, we need a value
between 100 and 200. The number of values in the range we
need to maintain is 100:
 (200 – 100).
One way to do this is to generate a value between 0 and 100
and then add 100 to the result. This added value of 100 is the
offset. By generating a value between 0 and 100 and then

Notes from the Boards Set # 7 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

7

adding 100 to the result, we are assured of a final result
between 100 and 200. Note that we may be off by one pixel on
either or both ends. For some computing applications (such as
landing an airplane or performing hip replacement surgery)
this is not acceptable. For 15-102, it usually does not matter.

Here is how our code might look:
 x = user-input-that-may-not-be-in-the-proper-range;
 ellipse((x % 100) + 100, y, height*.01, width*.01);
Let’s assume that the user entered t value 213 for the variable
x from the keyboard, Here is the evaluation:
 ellipse((x % 100) + 100, y, height*.01, width*.01);
 ellipse((213 % 100) + 100, y, height*.01, width*.01);
 ellipse((13) + 100, y, height*.01, width*.01);
 ellipse(113, y, height*.01, width*.01);

The % operator used in this manner keeps the circle in the
middle third of the window.
Wait a minute – you used a magic number for the offset..
Ok – we can cure that with this code:
 ellipse((x % (width/3)) + 100, y, height*.01, width*.01);

Note that the parentheses can get out of hand very quickly. We
strongly suggest you type both the open and closing parentheses
and then go back inside of them to key in the expression.

In Closing:
This is about as complex as 15-102 gets in term of arithmetic.
However, this is very important.

The correct evaluation of expressions involving float and int
values with all five operators is very important to you in your
projects AND your exams.

Work through the class code and bring your questions
to class if you are not sure how this stuff works.

This is VERY important.

Notes from the Boards Set # 7 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

8

Animation in Processing
Processing provides a “cheap1” way to use animation in
our code. From last week we know that Processing will
execute a setup() function if we have on in the code. It
will be the first function that Processing executes.

We also know that if we have a draw() function in the
code, Processing executes it when the execution of
setup() is finished.

This is only partially true. Processing executes the
draw() function over and over until we stop it either by
closing the window or calling an API function named
noLoop() to stop it. Each newly drawn version of the
window is called a frame.

If we do nothing special, the new frame is drawn over
top of the previous frame. This can produce some
interesting results. Read on…

Along with the system variables width and height,
Processing tracks the mouse location with system
variables named mouseX, mouseY, pmouseX and pmouseY.
The variables mouseX and mouseY are the location of the
mouse in this frame. The variables pmouseX and pmouseY
were the location of the mouse in the previous frame.
Using the following code:

void setup()
{
 size(400, 400);
 stroke(255, 0, 0);
 strokeWeight(5);
 background(255);
}

void draw()
{
 line(pmouseX, pmouseY, mouseX, mouseY);
}

here is the window after multiple iterations of the

1 by cheap, we mean easy… da’ moose

Notes from the Boards Set # 7 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

9

draw() function have produced multiple frames:

In this code each new frame is drawn on top of the
previous frame. One iteration of the draw() function
draws a line from the position of the mouse in the
previous frame to the mouse’s current position.

If we modify the code to draw a back point at the
mouse’s location in each frame like this:

void draw()
{
 stroke(255, 0, 0);
 strokeWeight(2);
 line(pmouseX, pmouseY, mouseX, mouseY);
 stroke(0);
 strokeWeight(6);
 point(mouseX, mouseY);
}

we get this result:

Notes from the Boards Set # 7 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

10

Our list of system variables includes:
• width
• height
• mouseX
• mousey
• pmouseX
• pmouseY

We can add two more:

• frameRate which is the number of frames displayed
each second or the number of times the draw()
function is executed each second.

• frameCount which is the total count of frames
displayed thus far.

There is a frameRate() function that allows us to alter the
frameRate. This is confusing but we have to live with it. Look
up the frameRate()function in the API.

Here is another sample:

void draw()
{
 line(width/2, height/2, mouseX, mouseY);
}

Notes from the Boards Set # 7 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

11

For some of our drawings, we will not want to see the
old frame when the new frame is drawn. We will want
just the new frame all by itself. Let’s see why.

Here is Jim’s target drawing code that uses the
frameCount as the x coordinate value of the target to
move the target from left to right on the screen. This
version draws the new frame on top of the old one with
the old one visible:

Each new frame draws the target one pixel further to
the right. The new frame is drawn on top of the
previous frame and this results in the black “smear”
extending to the left edge. Here is the code:

void draw()
{
 drawTarget(frameCount%width, 20, 20, 10);
}

The smear comes from the black stroke of the lartest
ellipse in the target. If Jim wants to avoid this
smearing, he needs to opaquely cover the previous
frame. Unfortunately there is no opaqueCover()
function in Processing so he does what we do when we
paint our room. We do not remove old paint when we
paint, we just paint over it. So, Jim can paint over it by
using the background() function:

void draw()
{
 background(200, 200, 0);
 drawTarget(frameCount%width, 20, 20, 10);
}

The new line of code covers the old frame with an
opaque yellow background and allows the new target
to be drawn on a clean yellow background:

Notes from the Boards Set # 7 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

12

It is difficult to show the animation in print but the
target began on the left side of the window and moved
across to the right. The black smear is gone.

There is a middle ground to explore. We have seen a
long smear and no smear. What if we want a little bit
of smearing to give the impression of movement. The
effect is shown below:

This effect can be created by using what is called the
alpha value or the alpha channel translucence. Here
is the code that creates this effect:

void draw()
{
 fil l(200, 200, 0, 10);
 rect(0, 0, width, height);
 drawTarget(frameCount%width, 20, 20, 10);
}

Notice that the call of the fill() function has a fourth
argument. This is the alpha value. This value can be
between 0 and 255. The value of 10 creates the degree

Notes from the Boards Set # 7 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

13

of transparency that allows us to see a part of the
previous frame.

What is happening here is that each new frame begins
with the drawing of a yellow rectangle2 that covers the
entire screen. This rectangle is not totally opaque. It
has a small amount of transparency or translucence.
The drawing of the multiple frames with this small
amount of transparence eventually covers the older
frames and leaves only a small percentage of the most
recent frames visible. This creates the smearing which
gives the impression of movement.

Use of the alpha value takes a lot of experimenting.
Here is the same program after several transits of the
target across the window:

The use of yellow as the background and black as the
stroke around the target results in a smear that is
never completely erased.

2 As far as we know, background() is always opaque even if you use an alpha
argument. We have tried but it does not work. If you get it to work, please let us know.

