
Notes from the Boards Set # 5 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

1

Yes, this stuff is on the exam.
Know it well.
Read this before class and bring your questions to class.

Starting today, we can no longer write our code as a list of
function calls and variable declarations as we have done in
the first three programs:

size(400, 400, P3D);

int depth = 0;
int edge = (int)(.07*width);

println("Printing the initial J");

background(#04075A);
lights();
fill(#F79007);

// Cap of J
// back row of blocks
pushMatrix();
 translate(width*.5, height*.2, depth - edge - 5);
 fill(#F79007);
 box(edge);
popMatrix();

We are moving from the “basic” style of coding to the
“structured” style where “structured” means that everything is
done inside of “function definitions”.

Before we get into what “function definitions” are, let’s review
variables.

Variables are used in our programs to store data for use in our
code. Homework #2 (hopefully) demonstrated the value of
using variables with arithmetic so we can easily move and/or
resize the initials. Processing has about 8 different kinds or
“types” of variables. We have used float. We will look at these
in greater depth a bit later.

Notes from the Boards Set # 5 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

2

Variables can be described by the type of data they store (float)
and, by their owner – who declares them and how they are
initialized. The discussion that follows looks at variables
based on their owner.

System variables:
There are a number of variables declared and initialized by
Processing. We have seen two thus far:

• width – which is the horizontal length of the screen.
• height – which is the vertical length of the screen.

Processing declares these variables as int (meaning that they
cannot have a decimal or fractional part) and initializes
them to 100.

If we call the function size(some-int-value, some-int-value);
Processing will take the first argument in the parentheses and
assign that value to width. Processing then takes the second
argument and assigns that value to height.

We will encounter other system variables as we continue to
work with Processing.

A general rule for system variables is for us to use them but
never change them. Violate this rule at your own risk…

Global variables:
The term “global” is new for us but we have used global
variables since Homework #2. When you declared either
 float x, y, wd, ht;

you were declaring what we call “global variables.” The term
“global” means that these variables can be used anywhere in
your code at any time. For right now, we will leave the
explanation at this level. Some of you might be thinking, “is
there any other kind of variable?” and the answer is “yes.” And
we will soon encounter another kind of variable.

Notes from the Boards Set # 5 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

3

=====================
Starting with homework #4, our code will have to consist of
only variable declarations and function definitions.

“OK – what is a function definition?”

The word definition tells us what the word means.

A function definition explains in often painful detail what
Processing must do when our code calls the function.

When we code this function call that tells Processing to execute
the translate function:

translate(width*.5, height*.2, depth - edge - 5);
some piece of code must define for Processing exactly what to
do with the values in the argument list and exactly how to do
a translation. Processing does not “Know” how to translate. It
has to have very precise and exact directions.

It is time to add function definitions to our code. Right now,
function definitions will be divided into three categories:
- The first category has the functions defined in Processing
and executed if our code calls them such as the following

pushMatrix();
 translate(width*.5, height*.2, depth - edge - 5);
 fill(#F79007);
 box(edge);
popMatrix();

The definitions of these functions (like all of the functions in
the API) are buried somewhere in Processing out of sight to us.

- The second category has functions that we can define in our
code but they are called by Processing. This is new for us. These
functions that we define will be called automatically for us at
the right time by Processing -- MUST never be called in our
code.

Notes from the Boards Set # 5 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

4

The first one of these is named setup(). It MUST NEVER have
arguments. If we define the function setup() in our code, this
will be called by Processing and executed AFTER the global
variables are declared and initialized.
The second one of these is named draw(). It MUST NEVER have
arguments. Processing calls and executes this when it finishes
executing setup().

The setup() function should be used to “set up” the initial values
of variables, color, strokeWeight, and draw any background stuff
that is needed. If we relate this to a stage play – the setup()
function sets the stage so draw() can perform the play. (There is
more to draw() than we are showing here… heh… heh…heh…).

Here is one possible definition of the setup() function
void setup()
{
 size(400, 400);
 background(0);
 smooth();
 fill(200, 200, 0);
}

The physical form of all function definitions resemble this one.
This definition tells Processing that when this function is
executed it has to:

1. set the size of the window to 400 x 400
2. make the background black
3. turn on smoothing
4. set the fill to a somewhat dim shade of yellow

Notes from the Boards Set # 5 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

5

The physical components of the function are labeled below:
< ================ this line is the function header ============ >
void setup ()
function return type function name argument list (which is empty)
{ opening brace to mark the start of the code in the definition

 list of what to do when the function is called
 size(400, 400);
 background(#000000);
 smooth();
 fill(200, 200, 0);

} closing brace to mark the end of the function definition

This is the
function
body

<
 |
 |
 |
 |
 |
 |
<

Each function has what we call a signature. The signatureof this
function is:
 setup()
Details on signatures are on page 8.

The stuff above described with the blue text will be on exam 1.

The function return type (void in this example) tells Processing
what this function returns. Some functions like the squre root
function return values. In programming, we can define
functions that are marked void which return nothing. Unlike
functions in math, programming functions do not always have
to return values. Typically, void functions “do stuff” instead of
“returning values.” such as fill(0) or smooth().

When you use the setup() function, the first line after the
opening brace MUST BE a call to size()! Violate this rule and
your web page will not show your program.

Notes from the Boards Set # 5 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

6

The physical form of the draw() function as shown below is
identical: to that of the function setup()
void draw()
{
 rect(width/2, height/2, .2*width, .3*height);
}
Compare the two definitions. You will see:

• a return type,
• function name,
• parentheses,
• an opening brace,
• a list of what must be done
• and a closing brace.

Processing will execute setup() first and then execute draw().

A third category of functions has the functions that we define
and we call.

float diameter;
void setup()
{
 size(400, 400); // This MUST be the first line.
 smooth();
 background(255, 255, 0);

 radius = 10;
}
void draw()
{
 drawTarget(100, 150);
 drawTarget(200, 150);
 drawTarget(100, 350);
}
void drawTarget(float x, float y) // function definition
{
 fill(255, 0, 0);
 ellipse(x, y, diameter*3, diameter*3);
 fill(0, 255, 0);
 ellipse(x, y, diameter*2, diameter*2);
 fill(0, 0, 255);
 ellipse(x, y, diameter, diameter);
}

Notes from the Boards Set # 5 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

7

Here is the output from the execution of this program:

The idea for the function drawTarget() comes from deep
somewhere inside Jim’s brain. The function is not part of
Processing. So Processing has no idea what drawTarget() means
unless Jim provides the definition of drawTarget().

This definition is written in the code in the exact same physical
form as the definition of setup() and draw().

There are two differences associated with this function:

• First, Jim must call drawTarget() if he wants Processing to
execute it.

• Second, There is “stuff” inside the parentheses in the
header line of the definition. We will look at this “stuff”
in a minute.

When Processing executes the draw() function, it eventually sees
the function call:

 drawTarget(100, 150);
Processing looks at its built-in list of function definitions (the
API) and does not find anything called drawTarget(float, float).
So it looks at Jim’s code. If there is a definition of drawTarget()
telling Processing what to do, it is happy and runs the code. If
there is no definition, it will not compile Jim’s code.

The stuff in the parentheses:
Shiffman calls the stuff in the parentheses of the definition the
arguments. He refers to the stuff in the parentheses of the
function call as parameters. This terminology is not uniform
and is confusing to everyone but especially confusing to
novices. Just remember that arguments and parameters are

Notes from the Boards Set # 5 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

8

the same exact thing – consider them to be the same word. You
say “toe-may-toe: and I say “tah-mah-toe”…1

Programming languages such as C, C++, Java and Processing
provide a way to send data from a function call into a
function via argument lists. The way this works is
straightforward:
The function drawTarget() is called here:

void draw()
{ arg #1 arg #2
 drawTarget(100, 150);

}

This tells Processing what to do when
drawTarget () is called

 arg #1 arg #2
void drawTarget(float x, float y)
{
 fill(255, 0, 0);
 ellipse(x, y, diameter*3, diameter*3);
 fill(0, 255, 0);
 ellipse(x, y, diameter*2, diameter*2);
 fill(0, 0, 255);
 ellipse(x, y, diameter, diameter);
}

The value of the first argument in
the call shown in blue 

is copied to the first argument in the
definition – also shown in blue. So
for this call of drawTarget(), x will be
100 when the code is executed.

The value of the second argument
sin the call shown in green 

is copied to the second argument in
the definition – also shown in green.
So for this call of drawTarget(), y will
be 150 when the code is executed.

This is exactly how Processing executes the functions you have
used in the first three home works. By using arguments’ in
this manner, we can draw targets anywhere in the window by
specifying different x and y values. Think about this and
bring your questions to class next time.

Back to the “signature of the function” first mentioned on page
5  The first line of the function definition contains the
“function signature”. The signature of the drawTarget()
function is shown below in red:

 void drawTarget(float x, float y)

1 (very old joke…)

Notes from the Boards Set # 5 Page

Copyright Jim Roberts May 2011 Pittsburgh, PA 15221 All Rights Reserved

9

We say that the signature of the function drawTarget() is:
 drawTarget(float , float)
The signature is the name of the function and the list of the
types of the arguments.
We begin here on next time… Bring your questions to class.

