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Plan for today

• First half
– Part 1

• Motivation and background

– Part 2
• How ZooKeeper works on paper

• Second half
– Part 3

• Share some practical experience

• Programming exercises

– Part 4
• Some caveats

• Wrap up
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ZooKeeper Tutorial

Part 1  

Fundamentals



Yahoo! Portal

Search

E‐mail  

Finance  

Weather  

News
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Yahoo!: Workload generated

• Home page

– 38 million users a day (USA)

– 2.5 billion users a month (USA)

• Web search

– 3 billion queries a month

• E‐mail

– 90 million actual users

– 10 min/visit
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Yahoo! Infrastructure

• Lots of servers

• Lots of processes

• High volumes of data

• Highly complex  
soaware systems

• … and developers are  
mere mortals

Yahoo! Lockport Data Center
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Coordination is important
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Coordination primitives

• Semaphores

• Queues

• Leader election

• Group membership

• Barriers

• Configuration

Eurosys 2011 ‐ Tutorial 8



Even small is hard…
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A simple model

• Work assignment

– Master assigns work

– Workers execute tasks assigned by master

Master

Worker Worker Worker Worker
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Master crashes

• Single point of failure

• No work is assigned

• Need to select a new master

Master

Worker Worker Worker Worker
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Worker crashes

• Not as bad… Overall system still works

– Does not work if there are dependencies

• Some tasks will never be executed

• Need to detect crashed workers

Master

Worker Worker Worker Worker
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Worker does not receive assignment

Worker Worker Worker Worker

• Same problem as before

• Some tasks may not be executed

• Need to guarantee that worker receives  
assignment

Master
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Fault‐tolerant distributed system

Master

Worker WorkerWorkerWorkerWorkerWorker

Coordination
Service

Master
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Fault‐tolerant distributed system

Master

Worker WorkerWorkerWorkerWorkerWorker

Coordination
Service

Master
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Fully distributed

Worker WorkerWorkerWorkerWorkerWorker

Coordination
Service
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Fallacies of distributed computing

1. The network is reliable.

2. Latency is zero.

3. Bandwidth is infinite.

4. The network is secure.

5. Topology doesn't change.

6. There is one administrator.

7. Transport cost is zero.

8. The network is homogeneous.

Peter Deutsch, http://blogs.sun.com/jag/resource/Fallacies.html
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One more fallacy

• You know who is alive
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Why is it difficult?

• FLP impossibility result

– Asynchronous systems

– Consensus is impossible if a single process can crash
Fischer, Lynch, Paterson, ACM PODS, 1983

• According to Herlihy, we do need consensus

– Wait‐free synchronization

– Wait‐free: completion in a finite number of steps

– Universal object: equivalent to solving consensus for n
processes

Herlihy, ACM TOPLAS, 1991
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Why is it difficult?

• CAP principle

– Can’t obtain availability, consistency, and parOtion
tolerance simultaneously

Availability

ParOtion
tolerance

Consistency

Gilbert, Lynch, ACM SIGACT NEWS, 2002
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The case for a coordination service

• Many impossibility results

• Many fallacies to stumble upon

• Several common requirements across  
applications
– Duplicating is bad

– Duplicating poorly is even worse

• Coordination service
– Implement it once and well

– Share by a number of applications
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Current systems

• Chubby, Google
– Lock service

Burrows, USENIX OSDI, 2006

• Centrifuge, Microsoft
– Lease service

Adya et al., USENIX NSDI, 2010

• ZooKeeper, Yahoo!
– Coordination kernel

– On Apache since 2008
Hunt et al., USENIX ATC, 2010
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Example – Bigtable, HBase

• Sparse column‐oriented data storage

– Tablet: range of rows

– Unit of distribution

• Architecture

– Master

– Tablet servers
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Example – Bigtable, HBase

• Master election

– Tolerate master crashes

• Metadata management

– ACLs, Tablet metadata

• Rendezvous

– Find tablet server

• Crash detection

– Live tablet servers
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Example – Web crawling

• Fetching service
– Fetch Web pages for search  

engine

• Master election
– Assign work

• Metadata management
– Politeness constraints
– Shards

• Crash detection
– Live workers

Master

Fetcher Fetcher Fetcher
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And more examples…

• GFS – Google File System
– Master election

– File system metadata

• KaCa ‐ Document indexing system
– Shard information

– Index version coordination

• Hedwig – Pub‐Sub system
– Topic metadata

– Topic assignment

Eurosys 2011 ‐ Tutorial 26



Summary of Part 1
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• Large infrastructures require coordination

• Fallacies of distributed compuOng

• Theory results: FLP, CAP

• Coordination services

• Examples

– Web search

– Storage systems



ZooKeeper
Tutorial

Part 2  

The service



ZooKeeper
Introduction
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• Coordination kernel

– Does not export concrete primitives

– Recipes to implement primitives

• File system based API

– Manipulate small data nodes:
znodes



ZooKeeper: Overview

Client App
ZooKeeper  
Client Lib

Follower

Leader

Follower

Follower

Follower

Client App
ZooKeeper  
Client Lib

Client App
ZooKeeper  
Client Lib

Session
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Session

Session

Replicated  
system

Leader  
atomically  
broadcast  
updates

Ensemble



ZooKeeper: Read operations

Client App
ZooKeeper  
Client Lib

Leader

Follower

Follower

Follower

Client App
ZooKeeper  
Client Lib

Client App
ZooKeeper  
Client Lib

Read  
operations  
processed  
locally
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Ensemble

Read “x” X = 10

Follower



ZooKeeper: Write operations

Client App
ZooKeeper  
Client Lib

Follower

Follower

Client App
ZooKeeper  
Client Lib

Client App
ZooKeeper  
Client Lib

Ensemble

Write “x”,11

Replicates across a quorum
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X = 11

Follower

X = 11

Leader

X = 11

Follower



ZooKeeper: Semantics of Sessions
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• A prefix of operations submitted through a  
session are executed

• Upon disconnection

– Client lib tries to contact another server

– Before session expires: connect to new server

– Server must have seen a transaction id at least as  
large as the session



ZooKeeper: API
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• Create znodes: create

– Persistent, sequential, ephemeral

• Read and modify data: setData, getData

• Read the children of znode: getChildren

• Check if znode exists: exists

• Delete a znode: delete



ZooKeeper: API

• Order

– Updates: Totally ordered, linearizable

– FIFO order for client operations

– Read: sequentially ordered

write(x, 10)

Client 1:
write(x, 11)

Client 2:

write(x, 10) write(x, 11)

Sequen7al:
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ZooKeeper: API

• Order

– Updates: Totally ordered, linearizable

– FIFO order for client operations

– Read: sequentially ordered

read(x)

write(x, 10)

Client 1:

Client 2:

Sequen7al:

write(x, 10)read(x)

read(x)

read(x)

Eurosys 2011 ‐ Tutorial 9



ZooKeeper: Example

Client 1  
(C1)

C3

/

C1 /C‐1

/C‐2

C2 /C‐3Client 3  
(C3)

1‐ create “/C‐”, “Ci”, sequential, ephemeral  
2‐ getChildren “/”
3‐ If not leader, getData “first node”

Client 2  
(C2)
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ZooKeeper: Znode changes
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• Znode changes

– Data is set

– Node is created or deleted

– Etc…

• To learn of znode changes

– Set a watch

– Upon change, client receives a notification

– Notification ordered before new updates



ZooKeeper: Watches

Client
/

10 /foo

getData “/foo”, true

return 10
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ZooKeeper: Watches

Client
/

11 /foo

Client

setData “/foo”, 11

return ok
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ZooKeeper: Watches

Client
/

11 /foo

Client

notification
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Watches, Locks, and the herd effect
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• Herd effect

– Large number of clients wake up simultaneously

• Load spikes

– Undesirable



Watches, Locks, and the herd effect

C1

C2

Cn

/

/C‐1

/C‐2

/C‐m
Client 3  

(Cn)

Client 1  
(C1)

Client 2  
(C2)
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Watches, Locks, and the herd effect

C2

Cn

/

/C‐2

/C‐m
Client 3  

(Cn)

Client 1  
(C1)

Client 2  
(C2)
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Watches, Locks, and the herd effect

Client 1  
(C1)

C2

Cn

/

/C‐2

/C‐m
Client 3  

(Cn)

Client 2  
(C2)

notification

notification
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Watches, Locks, and the herd effect
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• A solution

– Use order of clients

– Each client
• Determines the znode z preceding its own znode in the  

sequential order

• Watch z

– A single notification is generated upon a crash

• Disadvantage for leader election

– One client is notified of a leader change



Linearizability

• Correctness condition

• Informal definition
– Order of operations is equivalent to a sequential  

execution

– Equivalent order satisfies real time precedence order

read(x)

write(x, 10)

Client 1:

Client 2:

read(x)

write(x, 10)read(x) read(x)
Sequential:
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Linearizability

• Correctness condition

• Informal definition
– Order of operations is equivalent to a sequential  

execution

– Equivalent order satisfies real time precedence order

read(x)

write(x, 10)

Client 1:

Client 2:

read(x)

write(x, 10)read(x) read(x)
Sequen7al:
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Linearizability

• Correctness condition

• Informal definition
– Order of operations is equivalent to a sequential  

execution

– Equivalent order satisfies real time precedence order

read(x)

write(x, 10)

Client 1:

Client 2:

Sequen7al:
write(x, 10) read(x)

read(x)

read(x)
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Linearizability
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• Is it important? It depends…

• Implements universal object

– Herlihy’s result

– Implement consensus for n processes



Implementing consensus
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• Each process p proposes then decides
• Propose(v)

– setData “/c/proposal-”, “v”, sequential

• Decide()

– getChildren “/c”

– Select znode z with smallest sequence number

– v’ = getData “/c/z”

– Decide upon v’



Linearizability
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• Is it important? It depends…

• Implements universal object

– Herlihy’s result

– Implement consensus for n processes

– … but it is affected by hidden channels



Hidden channels

C1

/

/config

Client 2

Client 1

C1

/

/config

C1

/

/config

ZK1

ZK2

ZK3
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Hidden channels

C1

/

/config
Client 1

C2

/

/config

C2

/

/config

ZK1

ZK2

ZK3

setData “/config”, C2

Client 2

return OK
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Hidden channels

C1

/

/config

Client 2

Client 1

C2

/

/config

C2

/

/config

ZK1

ZK2

ZK3

I have changed the config,  
please read it!
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Hidden channels

C1

/

/config

Client 2

C2

/

/config

C2

/

/config

ZK1

ZK2

ZK3

getData “/config”

Client 1
return C1
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A hat trick…

• sync

– Asynchronous operation

– Before read operations

– Flushes the channel  
between follower and  
leader

– Makes operations  
linearizable

Follower

Client 1  
(C1)

getData “/foo”  

sync

Leader

/foo = C1

setData
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A hat trick…

• sync

– Asynchronous operation

– Before read operations

– Flushes the channel  
between follower and  
leader

– Makes operations  
linearizable

Follower

Client 1  
(C1)

Leader

sync

getData

/foo = C1

setData
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A hat trick…

• sync

– Asynchronous operation

– Before read operations

– Flushes the channel  
between follower and  
leader

– Makes operations  
linearizable

Follower

Client 1  
(C1)

Leader

sync

getData

sync

setData

sync
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/foo = C1



A hat trick…

• sync

– Asynchronous operation

– Before read operations

– Flushes the channel  
between follower and  
leader

– Makes operations  
linearizable

Follower

Client 1  
(C1)

Leader

sync

getData

sync

setData “/foo”, C2

/foo = C2
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A hat trick…

• sync

– Asynchronous operation

– Before read operations

– Flushes the channel  
between follower and  
leader

– Makes operations  
linearizable

Follower

Client 1  
(C1)

Leader

sync

getData

sync

/foo = C2
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A hat trick…

• sync

– Asynchronous operation

– Before read operations

– Flushes the channel  
between follower and  
leader

– Makes operations  
linearizable

Follower

Client 1  
(C1)

Leader

getData

return sync
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/foo = C2



A hat trick…

• sync

– Asynchronous operation

– Before read operations

– Flushes the channel  
between follower and  
leader

– Makes operations  
linearizable

Follower

Client 1  
(C1)

Leader

return “/foo”, C2

/foo = C2

Eurosys 2011 ‐ Tutorial 63



Summary of Part 2
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• ZooKeeper

– Replicated service

– Propagate updates with a broadcast protocol

• Updates use consensus

• Reads served locally

• Workload not linearizable because of reads

• sync() makes it linearizable



ZooKeeper Tutorial

Part 3

How it really works



Master/Worker System

 Clients

 Monitor the tasks

 Queue tasks to be executed

 Masters

 Assign tasks to workers

 Workers

 Get tasks from the master

 Execute tasks

Master Coordination  
Service

Master

Worker Worker Worker Worker
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Task Queue

tasks

client1‐1

client3‐4

client1‐6

client1

create(“/tasks/client1-”,  

cmds,

SEQUENTIAL)

cmds is an array of String
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Group Membership

worker1

create(“/assign/worker-”,  

“”,

EPHEMERAL SEQUENTIAL)

Master

listChildren(“/assign”,

true)

assign

worker1

worker2  

worker3
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Leader ElecKon

master

Master

create(“/master”,

hostinfo,  

EPHEMERAL)

getdata(“/master”,

true);

Backup
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Configuration

assign

worker2

getdata(“/assign/worker2”, true)

Master

setdata(“/assign/worker2”, znode_of_task)

worker1

worker2
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Connecting to ZooKeeper
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 Everyone has their own ZooKeeper address  
and auth info.

Try connecting to ZooKeeper with the CLI.  

java ‐jar zookeeper‐3.3.2‐fatjar.jar client zkaddr

 Use addAuth command to authenKcate

 Try out some commands

 Create znodes for /servers, /tasks, /assign



Worker Processing
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 Create a session

 Create the “worker” ephemeral znode

 Watch for the assign znode

 Deal with the watches

 Processing the assignment

- Update status in the task

- Delete assignment znode when finished

 What do to with SessionExpired



Code on your own or 
follow  together
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Client Processing

 Create a session

 Create a task as a child of the /tasks znode

 Watch the status child of the /tasks znode
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Code on your own or 
follow  together
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Master Processing

 Create a session

 Do leader election using master znode

 Watch the worker list

 Watch the task queue

 Watch the assignment queue

 Deal with the watches
 Deal with workers coming and going

 Assign new tasks

 Watch for compleKons
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Code on your own or 
follow  together
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Give it a try…

 Start up the master

 Start up a worker

 Try submitting a command

 Queue up a bunch of sleep 100

 Add more workers

 Try killing a worker

 Try killing the master. Did take over work?
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ZooKeeper Tutorial

Part 4

Caveat Emptor



Revisit FLP and CAP

 What should a master do when  
disconnected?

 What is the consequence of acAng as a master  
while disconnected?

P1 elected P1 disconnected P1 expires
P1 reconnects
gets expired event

Ame

P2 elected
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Revisit FLP and CAP
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 What happens if master elecAon gets a  
“ConnectionLossException” aLer the  
create?

 How do you fix it?

 How do you test it?



Guidelines to ConnectionLoss
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 A process will not see state changes while  
disconnected

 Masters should act very conservaAvely, they  
should not assume that they sAll have  
mastership

 Don't treat as if it's the end of the world. The  
client library will try to recover the session



Other issues

Eurosys 2011 ‐ Tutorial 83

 Watch out for SEQUENTIAL | EPHEMERAL!

 Problems resetting the ZooKeeper state

 What happens when you clear server state while  
clients are running?

 What happens when you clear some servers but  
not others?



WriAng a test
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 Use JUnit

 Use QuorumBase
 In setup call QuorumBase.setup()

 In tearDown call QuorumBase.tearDown()

 Write a simple test
 Use QuorumBase.hostPort to iniAalize the  

ZooKeeper object in the tests

 Startup a master and a backup.

 Kill the master and make sure backup takes over



Guidelines for SessionExpiration
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 It is the end of the world!

 Should be rare.

 The session handle is dead, so you need a  
new one.

 It is dangerous to try to transparently recover  
by creating a new session. Usually there is  
some cleanup and setup that needs to be  
done



Code on your own or follow  
together
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Summary
 When used properly ZooKeeper can make it easy  to build 

distributed applicaAons.

 ZooKeeper is a tool to help you deal with the  chaos of 

distributed systems. It isn't magic.

 Don't try to shortcut the API
 Think about the consequences of ConnectionLoss

and SessionExpiration

 Make sure you test

 Checkout the developer resources
http://zookeeper.apache.org
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http://zookeeper.apache.org/

