
ZooKeeper Tutorial

Flavio Junqueira
Benjamin Reed

Yahoo! Research

Eurosys 2011 ‐ Tutorial 1

hCps://cwiki.apache.org/confluence/display/ZOOKEEPER/EurosysTutorial

Used for 14-848 Discussion, 11/6/2017 by Gregory Kesden

Plan for today

• First half
– Part 1

• Motivation and background

– Part 2
• How ZooKeeper works on paper

• Second half
– Part 3

• Share some practical experience

• Programming exercises

– Part 4
• Some caveats

• Wrap up

Eurosys 2011 ‐ Tutorial 2

ZooKeeper Tutorial

Part 1

Fundamentals

Yahoo! Portal

Search

E‐mail

Finance

Weather

News

Eurosys 2011 ‐ Tutorial 4

Yahoo!: Workload generated

• Home page

– 38 million users a day (USA)

– 2.5 billion users a month (USA)

• Web search

– 3 billion queries a month

• E‐mail

– 90 million actual users

– 10 min/visit

Eurosys 2011 ‐ Tutorial 5

Yahoo! Infrastructure

• Lots of servers

• Lots of processes

• High volumes of data

• Highly complex
soaware systems

• … and developers are
mere mortals

Yahoo! Lockport Data Center

Eurosys 2011 ‐ Tutorial 6

Coordination is important

Eurosys 2011 ‐ Tutorial 7

Coordination primitives

• Semaphores

• Queues

• Leader election

• Group membership

• Barriers

• Configuration

Eurosys 2011 ‐ Tutorial 8

Even small is hard…

Eurosys 2011 ‐ Tutorial 9

A simple model

• Work assignment

– Master assigns work

– Workers execute tasks assigned by master

Master

Worker Worker Worker Worker

Eurosys 2011 ‐ Tutorial 10

Master crashes

• Single point of failure

• No work is assigned

• Need to select a new master

Master

Worker Worker Worker Worker

Eurosys 2011 ‐ Tutorial 11

Worker crashes

• Not as bad… Overall system still works

– Does not work if there are dependencies

• Some tasks will never be executed

• Need to detect crashed workers

Master

Worker Worker Worker Worker

Eurosys 2011 ‐ Tutorial 12

Worker does not receive assignment

Worker Worker Worker Worker

• Same problem as before

• Some tasks may not be executed

• Need to guarantee that worker receives
assignment

Master

Eurosys 2011 ‐ Tutorial 13

Fault‐tolerant distributed system

Master

Worker WorkerWorkerWorkerWorkerWorker

Coordination
Service

Master

Eurosys 2011 ‐ Tutorial 14

Fault‐tolerant distributed system

Master

Worker WorkerWorkerWorkerWorkerWorker

Coordination
Service

Master

Eurosys 2011 ‐ Tutorial 15

Fully distributed

Worker WorkerWorkerWorkerWorkerWorker

Coordination
Service

Eurosys 2011 ‐ Tutorial 16

Fallacies of distributed computing

1. The network is reliable.

2. Latency is zero.

3. Bandwidth is infinite.

4. The network is secure.

5. Topology doesn't change.

6. There is one administrator.

7. Transport cost is zero.

8. The network is homogeneous.

Peter Deutsch, http://blogs.sun.com/jag/resource/Fallacies.html

Eurosys 2011 ‐ Tutorial 17

One more fallacy

• You know who is alive

Eurosys 2011 ‐ Tutorial 18

Why is it difficult?

• FLP impossibility result

– Asynchronous systems

– Consensus is impossible if a single process can crash
Fischer, Lynch, Paterson, ACM PODS, 1983

• According to Herlihy, we do need consensus

– Wait‐free synchronization

– Wait‐free: completion in a finite number of steps

– Universal object: equivalent to solving consensus for n
processes

Herlihy, ACM TOPLAS, 1991

Eurosys 2011 ‐ Tutorial 19

Why is it difficult?

• CAP principle

– Can’t obtain availability, consistency, and parOtion
tolerance simultaneously

Availability

ParOtion
tolerance

Consistency

Gilbert, Lynch, ACM SIGACT NEWS, 2002

Eurosys 2011 ‐ Tutorial 20

The case for a coordination service

• Many impossibility results

• Many fallacies to stumble upon

• Several common requirements across
applications
– Duplicating is bad

– Duplicating poorly is even worse

• Coordination service
– Implement it once and well

– Share by a number of applications

Eurosys 2011 ‐ Tutorial 21

Current systems

• Chubby, Google
– Lock service

Burrows, USENIX OSDI, 2006

• Centrifuge, Microsoft
– Lease service

Adya et al., USENIX NSDI, 2010

• ZooKeeper, Yahoo!
– Coordination kernel

– On Apache since 2008
Hunt et al., USENIX ATC, 2010

Eurosys 2011 ‐ Tutorial 22

Example – Bigtable, HBase

• Sparse column‐oriented data storage

– Tablet: range of rows

– Unit of distribution

• Architecture

– Master

– Tablet servers

Eurosys 2011 ‐ Tutorial 23

Example – Bigtable, HBase

• Master election

– Tolerate master crashes

• Metadata management

– ACLs, Tablet metadata

• Rendezvous

– Find tablet server

• Crash detection

– Live tablet servers

Eurosys 2011 ‐ Tutorial 24

Example – Web crawling

• Fetching service
– Fetch Web pages for search

engine

• Master election
– Assign work

• Metadata management
– Politeness constraints
– Shards

• Crash detection
– Live workers

Master

Fetcher Fetcher Fetcher

Eurosys 2011 ‐ Tutorial 25

And more examples…

• GFS – Google File System
– Master election

– File system metadata

• KaCa ‐ Document indexing system
– Shard information

– Index version coordination

• Hedwig – Pub‐Sub system
– Topic metadata

– Topic assignment

Eurosys 2011 ‐ Tutorial 26

Summary of Part 1

Eurosys 2011 ‐ Tutorial 27

• Large infrastructures require coordination

• Fallacies of distributed compuOng

• Theory results: FLP, CAP

• Coordination services

• Examples

– Web search

– Storage systems

ZooKeeper
Tutorial

Part 2

The service

ZooKeeper
Introduction

Eurosys 2011 ‐ Tutorial 2
9

• Coordination kernel

– Does not export concrete primitives

– Recipes to implement primitives

• File system based API

– Manipulate small data nodes:
znodes

ZooKeeper: Overview

Client App
ZooKeeper
Client Lib

Follower

Leader

Follower

Follower

Follower

Client App
ZooKeeper
Client Lib

Client App
ZooKeeper
Client Lib

Session

Eurosys 2011 ‐ Tutorial 3
0

Session

Session

Replicated
system

Leader
atomically
broadcast
updates

Ensemble

ZooKeeper: Read operations

Client App
ZooKeeper
Client Lib

Leader

Follower

Follower

Follower

Client App
ZooKeeper
Client Lib

Client App
ZooKeeper
Client Lib

Read
operations
processed
locally

Eurosys 2011 ‐ Tutorial 3
1

Ensemble

Read “x” X = 10

Follower

ZooKeeper: Write operations

Client App
ZooKeeper
Client Lib

Follower

Follower

Client App
ZooKeeper
Client Lib

Client App
ZooKeeper
Client Lib

Ensemble

Write “x”,11

Replicates across a quorum
Eurosys 2011 ‐ Tutorial 3

2

X = 11

Follower

X = 11

Leader

X = 11

Follower

ZooKeeper: Semantics of Sessions

Eurosys 2011 ‐ Tutorial 3
3

• A prefix of operations submitted through a
session are executed

• Upon disconnection

– Client lib tries to contact another server

– Before session expires: connect to new server

– Server must have seen a transaction id at least as
large as the session

ZooKeeper: API

Eurosys 2011 ‐ Tutorial 3
4

• Create znodes: create

– Persistent, sequential, ephemeral

• Read and modify data: setData, getData

• Read the children of znode: getChildren

• Check if znode exists: exists

• Delete a znode: delete

ZooKeeper: API

• Order

– Updates: Totally ordered, linearizable

– FIFO order for client operations

– Read: sequentially ordered

write(x, 10)

Client 1:
write(x, 11)

Client 2:

write(x, 10) write(x, 11)

Sequen7al:

Eurosys 2011 ‐ Tutorial 3
5

ZooKeeper: API

• Order

– Updates: Totally ordered, linearizable

– FIFO order for client operations

– Read: sequentially ordered

read(x)

write(x, 10)

Client 1:

Client 2:

Sequen7al:

write(x, 10)read(x)

read(x)

read(x)

Eurosys 2011 ‐ Tutorial 9

ZooKeeper: Example

Client 1
(C1)

C3

/

C1 /C‐1

/C‐2

C2 /C‐3Client 3
(C3)

1‐ create “/C‐”, “Ci”, sequential, ephemeral
2‐ getChildren “/”
3‐ If not leader, getData “first node”

Client 2
(C2)

Eurosys 2011 ‐ Tutorial 10

ZooKeeper: Znode changes

Eurosys 2011 ‐ Tutorial 38

• Znode changes

– Data is set

– Node is created or deleted

– Etc…

• To learn of znode changes

– Set a watch

– Upon change, client receives a notification

– Notification ordered before new updates

ZooKeeper: Watches

Client
/

10 /foo

getData “/foo”, true

return 10

Eurosys 2011 ‐ Tutorial 39

ZooKeeper: Watches

Client
/

11 /foo

Client

setData “/foo”, 11

return ok

Eurosys 2011 ‐ Tutorial 40

ZooKeeper: Watches

Client
/

11 /foo

Client

notification

Eurosys 2011 ‐ Tutorial 41

Watches, Locks, and the herd effect

Eurosys 2011 ‐ Tutorial 42

• Herd effect

– Large number of clients wake up simultaneously

• Load spikes

– Undesirable

Watches, Locks, and the herd effect

C1

C2

Cn

/

/C‐1

/C‐2

/C‐m
Client 3

(Cn)

Client 1
(C1)

Client 2
(C2)

Eurosys 2011 ‐ Tutorial 43

Watches, Locks, and the herd effect

C2

Cn

/

/C‐2

/C‐m
Client 3

(Cn)

Client 1
(C1)

Client 2
(C2)

Eurosys 2011 ‐ Tutorial 44

Watches, Locks, and the herd effect

Client 1
(C1)

C2

Cn

/

/C‐2

/C‐m
Client 3

(Cn)

Client 2
(C2)

notification

notification

Eurosys 2011 ‐ Tutorial 45

Watches, Locks, and the herd effect

Eurosys 2011 ‐ Tutorial 46

• A solution

– Use order of clients

– Each client
• Determines the znode z preceding its own znode in the

sequential order

• Watch z

– A single notification is generated upon a crash

• Disadvantage for leader election

– One client is notified of a leader change

Linearizability

• Correctness condition

• Informal definition
– Order of operations is equivalent to a sequential

execution

– Equivalent order satisfies real time precedence order

read(x)

write(x, 10)

Client 1:

Client 2:

read(x)

write(x, 10)read(x) read(x)
Sequential:

Eurosys 2011 ‐ Tutorial 47

Linearizability

• Correctness condition

• Informal definition
– Order of operations is equivalent to a sequential

execution

– Equivalent order satisfies real time precedence order

read(x)

write(x, 10)

Client 1:

Client 2:

read(x)

write(x, 10)read(x) read(x)
Sequen7al:

Eurosys 2011 ‐ Tutorial 48

Linearizability

• Correctness condition

• Informal definition
– Order of operations is equivalent to a sequential

execution

– Equivalent order satisfies real time precedence order

read(x)

write(x, 10)

Client 1:

Client 2:

Sequen7al:
write(x, 10) read(x)

read(x)

read(x)

Eurosys 2011 ‐ Tutorial 49

Linearizability

Eurosys 2011 ‐ Tutorial 50

• Is it important? It depends…

• Implements universal object

– Herlihy’s result

– Implement consensus for n processes

Implementing consensus

Eurosys 2011 ‐ Tutorial 51

• Each process p proposes then decides
• Propose(v)

– setData “/c/proposal-”, “v”, sequential

• Decide()

– getChildren “/c”

– Select znode z with smallest sequence number

– v’ = getData “/c/z”

– Decide upon v’

Linearizability

Eurosys 2011 ‐ Tutorial 52

• Is it important? It depends…

• Implements universal object

– Herlihy’s result

– Implement consensus for n processes

– … but it is affected by hidden channels

Hidden channels

C1

/

/config

Client 2

Client 1

C1

/

/config

C1

/

/config

ZK1

ZK2

ZK3

Eurosys 2011 ‐ Tutorial 53

Hidden channels

C1

/

/config
Client 1

C2

/

/config

C2

/

/config

ZK1

ZK2

ZK3

setData “/config”, C2

Client 2

return OK

Eurosys 2011 ‐ Tutorial 54

Hidden channels

C1

/

/config

Client 2

Client 1

C2

/

/config

C2

/

/config

ZK1

ZK2

ZK3

I have changed the config,
please read it!

Eurosys 2011 ‐ Tutorial 55

Hidden channels

C1

/

/config

Client 2

C2

/

/config

C2

/

/config

ZK1

ZK2

ZK3

getData “/config”

Client 1
return C1

Eurosys 2011 ‐ Tutorial 56

A hat trick…

• sync

– Asynchronous operation

– Before read operations

– Flushes the channel
between follower and
leader

– Makes operations
linearizable

Follower

Client 1
(C1)

getData “/foo”

sync

Leader

/foo = C1

setData

Eurosys 2011 ‐ Tutorial 30

A hat trick…

• sync

– Asynchronous operation

– Before read operations

– Flushes the channel
between follower and
leader

– Makes operations
linearizable

Follower

Client 1
(C1)

Leader

sync

getData

/foo = C1

setData

Eurosys 2011 ‐ Tutorial 58

A hat trick…

• sync

– Asynchronous operation

– Before read operations

– Flushes the channel
between follower and
leader

– Makes operations
linearizable

Follower

Client 1
(C1)

Leader

sync

getData

sync

setData

sync

Eurosys 2011 ‐ Tutorial 59

/foo = C1

A hat trick…

• sync

– Asynchronous operation

– Before read operations

– Flushes the channel
between follower and
leader

– Makes operations
linearizable

Follower

Client 1
(C1)

Leader

sync

getData

sync

setData “/foo”, C2

/foo = C2

Eurosys 2011 ‐ Tutorial 60

A hat trick…

• sync

– Asynchronous operation

– Before read operations

– Flushes the channel
between follower and
leader

– Makes operations
linearizable

Follower

Client 1
(C1)

Leader

sync

getData

sync

/foo = C2

Eurosys 2011 ‐ Tutorial 61

A hat trick…

• sync

– Asynchronous operation

– Before read operations

– Flushes the channel
between follower and
leader

– Makes operations
linearizable

Follower

Client 1
(C1)

Leader

getData

return sync

Eurosys 2011 ‐ Tutorial 62

/foo = C2

A hat trick…

• sync

– Asynchronous operation

– Before read operations

– Flushes the channel
between follower and
leader

– Makes operations
linearizable

Follower

Client 1
(C1)

Leader

return “/foo”, C2

/foo = C2

Eurosys 2011 ‐ Tutorial 63

Summary of Part 2

Eurosys 2011 ‐ Tutorial 64

• ZooKeeper

– Replicated service

– Propagate updates with a broadcast protocol

• Updates use consensus

• Reads served locally

• Workload not linearizable because of reads

• sync() makes it linearizable

ZooKeeper Tutorial

Part 3

How it really works

Master/Worker System

 Clients

 Monitor the tasks

 Queue tasks to be executed

 Masters

 Assign tasks to workers

 Workers

 Get tasks from the master

 Execute tasks

Master Coordination
Service

Master

Worker Worker Worker Worker

Eurosys 2011 ‐ Tutorial 66

Task Queue

tasks

client1‐1

client3‐4

client1‐6

client1

create(“/tasks/client1-”,

cmds,

SEQUENTIAL)

cmds is an array of String

Eurosys 2011 ‐ Tutorial 67

Group Membership

worker1

create(“/assign/worker-”,

“”,

EPHEMERAL SEQUENTIAL)

Master

listChildren(“/assign”,

true)

assign

worker1

worker2

worker3

Eurosys 2011 ‐ Tutorial 68

Leader ElecKon

master

Master

create(“/master”,

hostinfo,

EPHEMERAL)

getdata(“/master”,

true);

Backup

Eurosys 2011 ‐ Tutorial 69

Configuration

assign

worker2

getdata(“/assign/worker2”, true)

Master

setdata(“/assign/worker2”, znode_of_task)

worker1

worker2

Eurosys 2011 ‐ Tutorial 70

Connecting to ZooKeeper

Eurosys 2011 ‐ Tutorial 71

 Everyone has their own ZooKeeper address
and auth info.

Try connecting to ZooKeeper with the CLI.

java ‐jar zookeeper‐3.3.2‐fatjar.jar client zkaddr

 Use addAuth command to authenKcate

 Try out some commands

 Create znodes for /servers, /tasks, /assign

Worker Processing

Eurosys 2011 ‐ Tutorial 72

 Create a session

 Create the “worker” ephemeral znode

 Watch for the assign znode

 Deal with the watches

 Processing the assignment

- Update status in the task

- Delete assignment znode when finished

 What do to with SessionExpired

Code on your own or
follow together

Eurosys 2011 ‐ Tutorial 9

Client Processing

 Create a session

 Create a task as a child of the /tasks znode

 Watch the status child of the /tasks znode

Eurosys 2011 ‐ Tutorial 10

Code on your own or
follow together

Eurosys 2011 ‐ Tutorial 11

Master Processing

 Create a session

 Do leader election using master znode

 Watch the worker list

 Watch the task queue

 Watch the assignment queue

 Deal with the watches
 Deal with workers coming and going

 Assign new tasks

 Watch for compleKons

Eurosys 2011 ‐ Tutorial 12

Code on your own or
follow together

Eurosys 2011 ‐ Tutorial 13

Give it a try…

 Start up the master

 Start up a worker

 Try submitting a command

 Queue up a bunch of sleep 100

 Add more workers

 Try killing a worker

 Try killing the master. Did take over work?

Eurosys 2011 ‐ Tutorial 14

ZooKeeper Tutorial

Part 4

Caveat Emptor

Revisit FLP and CAP

 What should a master do when
disconnected?

 What is the consequence of acAng as a master
while disconnected?

P1 elected P1 disconnected P1 expires
P1 reconnects
gets expired event

Ame

P2 elected

Eurosys 2011 ‐ Tutorial 80

Revisit FLP and CAP

Eurosys 2011 ‐ Tutorial 81

 What happens if master elecAon gets a
“ConnectionLossException” aLer the
create?

 How do you fix it?

 How do you test it?

Guidelines to ConnectionLoss

Eurosys 2011 ‐ Tutorial 82

 A process will not see state changes while
disconnected

 Masters should act very conservaAvely, they
should not assume that they sAll have
mastership

 Don't treat as if it's the end of the world. The
client library will try to recover the session

Other issues

Eurosys 2011 ‐ Tutorial 83

 Watch out for SEQUENTIAL | EPHEMERAL!

 Problems resetting the ZooKeeper state

 What happens when you clear server state while
clients are running?

 What happens when you clear some servers but
not others?

WriAng a test

Eurosys 2011 ‐ Tutorial 84

 Use JUnit

 Use QuorumBase
 In setup call QuorumBase.setup()

 In tearDown call QuorumBase.tearDown()

 Write a simple test
 Use QuorumBase.hostPort to iniAalize the

ZooKeeper object in the tests

 Startup a master and a backup.

 Kill the master and make sure backup takes over

Guidelines for SessionExpiration

Eurosys 2011 ‐ Tutorial 85

 It is the end of the world!

 Should be rare.

 The session handle is dead, so you need a
new one.

 It is dangerous to try to transparently recover
by creating a new session. Usually there is
some cleanup and setup that needs to be
done

Code on your own or follow
together

Eurosys 2011 ‐ Tutorial 8

Summary
 When used properly ZooKeeper can make it easy to build

distributed applicaAons.

 ZooKeeper is a tool to help you deal with the chaos of

distributed systems. It isn't magic.

 Don't try to shortcut the API
 Think about the consequences of ConnectionLoss

and SessionExpiration

 Make sure you test

 Checkout the developer resources
http://zookeeper.apache.org

Eurosys 2011 ‐ Tutorial 9

http://zookeeper.apache.org/

