Introduction to Apache Spark

Patrick Wendell - Databricks

What is Spark?

Fast and Expressive Cluster Computing Engine Compatible with Apache Hadoop

Efficient

- General execution graphs
- In-memory storage

- Rich APIs in Java,
 Scala, Python
- Interactive shell

The Spark Community

Commits to master, excluding merge commits

Contribution Type: Commits 🕶

Today's Talk

The Spark programming model

Language and deployment choices

Example algorithm (PageRank)

Key Concept: RDD's

Write programs in terms of operations on distributed datasets

Resilient Distributed Datasets

- Collections of objects spread across a cluster, stored in RAM or on Disk
- Built through parallel transformations
- Automatically rebuilt on failure

Operations

- Transformations (e.g. map, filter, groupBy)
- Actions

 (e.g. count, collect, save)

Example: Log Mining

0.5 sec vs. 20s for on-disk

Load error messages from a log into memory, then interactively search for various patterns

```
Transformed RDD
                                                                           Cache 1
lines = sr., K.textFile("hdfs://...")
                                                                       Worker
                                                              results
errors = lines.filter(lambda s: s.startswith("ERROR"))
                                                                 tasks
                                                                        Block 1
messages = errors.map(lambda s: s.split("\t")[2])
                                                        Driver
messages.cache()
                                                      Action
                                                                           Cache 2
messages.filter(lambda s: "mysql" in s).count()
                                                                      Worker
messages.filter(lambda s: "php" in s).count()
                                                      Cache 3
                                                                       Block 2
                                                    Worker
         Full-text search of Wikipedia
            60GB on 20 EC2 machine
```

Block 3

Scaling Down

Fault Recovery

RDDs track *lineage* information that can be used to efficiently recompute lost data

Programming with RDD's

SparkContext

- Main entry point to Spark functionality
- Available in shell as variable SC
- In standalone programs, you'd make your own (see later for details)

Creating RDDs

```
# Turn a Python collection into an RDD
> sc.parallelize([1, 2, 3])
# Load text file from local FS, HDFS, or S3
> sc.textFile("file.txt")
> sc.textFile("directory/*.txt")
> sc.textFile("hdfs://namenode:9000/path/file")
# Use existing Hadoop InputFormat (Java/Scala only)
> sc.hadoopFile(keyClass, valClass, inputFmt, conf)
```

Basic Transformations

```
> nums = sc.parallelize([1, 2, 3])
# Pass each element through a function
> squares = nums_map(lambda x: x*x) // {1, 4, 9}
# Keep elements passing a predicate
> even = squares.filter(lambda x: x % 2 == 0) // {4}
# Map each element to zero or more others
> nums.flatMap(lambda x: => range(x))
   > # => {0, 0, 1, 0, 1, 2}
```

Range object (sequence

of numbers 0, 1, ...

Basic Actions

```
> nums = sc.parallelize([1, 2, 3])
# Retrieve RDD contents as a local collection
> nums.collect() # \Rightarrow [1, 2, 3]
# Return first K elements
> nums.take(2) # => [1, 2]
# Count number of elements
> nums.count() # => 3
# Merge elements with an associative function
> nums.reduce(lambda x, y: x + y) # => 6
# Write elements to a text file
> nums.saveAsTextFile("hdfs://file.txt")
```

Working with Key-Value Pairs

Spark's "distributed reduce" transformations operate on RDDs of key-value pairs

```
Python: pair = (a, b)
                pair[0] # => a
                pair[1] # => b
Scala: val pair = (a, b)
                pair. 1 // => a
                pair. 2 // => b
Java:
          Tuple2 pair = new Tuple2(a, b);
                pair. 1 // => a
                pair. 2 // => b
```

Some Key-Value Operations

reduceBykey also automatically implements combiners on the map side

Example: Word Count

Other Key-Value Operations

```
> visits = sc.parallelize([ ("index.html", "1.2.3.4"),
                             ("about.html", "3.4.5.6"),
                             ("index.html", "1.3.3.1") ])
> pageNames = sc.parallelize([ ("index.html", "Home"),
                                ("about.html", "About") ])
> visits.join(pageNames)
  # ("index.html", ("1.2.3.4", "Home"))
  # ("index.html", ("1.3.3.1", "Home"))
  # ("about.html", ("3.4.5.6", "About"))
> visits.cogroup(pageNames)
  # ("index.html", (["1.2.3.4", "1.3.3.1"], ["Home"]))
  # ("about.html", (["3.4.5.6"], ["About"]))
```


Setting the Level of Parallelism

All the pair RDD operations take an optional second parameter for number of tasks

```
> words.reduceByKey(lambda x, y: x + y, 5)
```

- > words.groupByKey(5)
- > visits.join(pageViews, 5)

Using Local Variables

Any external variables you use in a closure will automatically be shipped to the cluster:

```
> query = sys.stdin.readline()
```

> pages.filter(lambda x: query in x).count()

Some caveats:

- Each task gets a new copy (updates aren't sent back)
- Variable must be Serializable / Pickle-able
- Don't use fields of an outer object (ships all of it!)

Under The Hood: DAG Scheduler

- General task graphs
- Automatically pipelines functions
- Data locality aware
- Partitioning aware to avoid shuffles

More RDD Operators

- map
- filter
- groupBy
- sort
- union
- join
- leftOuterJoin
- rightOuterJoin

- reduce
- count
- fold
- reduceByKey
- groupByKey
- cogroup
- cross
- zip

sample

take

first

partitionBy

mapWith

pipe

save

How to Run Spark

Language Support

Python

```
lines = sc.textFile(...)
lines.filter(lambda s: "ERROR" in s).count()
```

Scala

```
val lines = sc.textFile(...)
lines.filter(x => x.contains("ERROR")).count()
```

Java

```
JavaRDD<String> lines = sc.textFile(...);
lines.filter(new Function<String, Boolean>() {
   Boolean call(String s) {
    return s.contains("error");
   }
}).count();
```

Standalone Programs

Python, Scala, & Java

Interactive Shells

Python & Scala

Performance

- Java & Scala are faster due to static typing
- ...but Python is often fine

Interactive Shell

- The Fastest Way to Learn Spark
- Available in Python and Scala
- Runs as an application on an existing Spark Cluster...
- OR Can run locally

... or a Standalone Application

```
import sys
from pyspark import SparkContext
if ___name___ == "___main___":
    sc = SparkContext( "local", "WordCount", sys.argv[0],
None)
    lines = sc.textFile(sys.argv[1])
    counts = lines.flatMap(lambda s: s.split(" ")) \
                  .map(lambda word: (word, 1)) \
                   .reduceByKey(lambda x, y: x + y)
    counts.saveAsTextFile(sys.argv[2])
```


Create a SparkContext

```
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
val sc = new SparkContext("url", "name", "sparkHome", Seq("app.jar"))
List of JARs with
                                                  app code (to ship)
JavaSparkContext sc = new JavaSparkContext(
   "masterUrl", "name", "sparkHome", new String[] {"app.jar"}));
from pyspark import SparkContext
```

sc = SparkContext("masterUrl", "name", "sparkHome", ["library.py"]))

Add Spark to Your Project

• Scala / Java: add a Maven dependency on

groupId: org.spark-project

artifactId: spark-core_2.10

version: 0.9.0

Python: run program with our pyspark script

Administrative GUIs

http://<Standalone Master>:8080 (by default)

Software Components

- Spark runs as a library in your program (1 instance per app)
- Runs tasks locally or on cluster
 - Mesos, YARN or standalone mode
- Accesses storage systems via Hadoop InputFormat API
 - Can use HBase, HDFS, S3, ...

EXAMPLE APPLICATION: PAGERANK

Example: PageRank

- Good example of a more complex algorithm
 - Multiple stages of map & reduce
- Benefits from Spark's in-memory caching
 - Multiple iterations over the same data

Basic Idea

Give pages ranks (scores) based on links to them

- Links from many pages → high rank
- Link from a high-rank
 page → high rank

- Start each page at a rank of 1
- 2. On each iteration, have page p contribute $rank_p / |neighbors_p|$ to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times contribs$

- 1. Start each page at a rank of 1
- 2. On each iteration, have page p contribute $rank_p / |neighbors_p|$ to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times contribs$

- 1. Start each page at a rank of 1
- 2. On each iteration, have page p contribute $rank_p / |neighbors_p|$ to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times contribs$

- Start each page at a rank of 1
- 2. On each iteration, have page p contribute $rank_p / |neighbors_p|$ to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times contribs$

Algorithm

- Start each page at a rank of 1
- 2. On each iteration, have page p contribute $rank_p / |neighbors_p|$ to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times contribs$

Algorithm

- 1. Start each page at a rank of 1
- 2. On each iteration, have page p contribute $rank_p / |neighbors_p|$ to its neighbors
- 3. Set each page's rank to $0.15 + 0.85 \times contribs$

Scala Implementation

```
val links = // load RDD of (url, neighbors) pairs
var ranks = // load RDD of (url, rank) pairs
for (i <- 1 to ITERATIONS) {</pre>
  val contribs = links.join(ranks).flatMap {
    case (url, (links, rank)) =>
      links.map(dest => (dest, rank/links.size))
  ranks = contribs.reduceByKey(_ + _)
                  .mapValues(0.15 + 0.85 * _)
ranks.saveAsTextFile(...)
```


PageRank Performance

Other Iterative Algorithms

Time per Iteration (s)

CONCLUSION

Conclusion

- Spark offers a rich API to make data analytics fast: both fast to write and fast to run
- Achieves 100x speedups in real applications
- Growing community with 25+ companies contributing

Get Started

Up and Running in a Few Steps

- Download
- Unzip
- Shell

Project Resources

- Examples on the Project Site
- Examples in the Distribution
- Documentation

http://spark.incubator.apache.org

Datasets And Dataframes

 https://spark.apache.org/docs/latest/sqlprogramming-guide.html

Dataset

- A Dataset is a distributed collection of data.
 - Like RDDs: Strong typing, ability to use powerful lambda functions
 - Plus the benefits of Spark SQL's optimized execution engine.
 - A Dataset can be constructed from JVM objects and then manipulated using functional transformations (map, flatMap, filter, etc.).
 - The Dataset API is available in Scala and Java.
 - Python does not have the support for the Dataset API. But due to Python's dynamic nature, many of the benefits of the Dataset API are already available
 - i.e. you can access the field of a row by name naturallyrow.columnName).
 - The case for R is similar to Python

DataSets

- Datasets are similar to RDDs, however, instead of using Java serialization or Kryo they use a specialized <u>Encoder</u> to serialize the objects for processing or transmitting over the network.
- While both encoders and standard serialization are responsible for turning an object into bytes, encoders are code generated dynamically and use a format that allows Spark to perform many operations like filtering, sorting and hashing without deserializing the bytes back into an object
- Data sets also expose more internals to query planning (expressions, fields, etc)

Creating Datasets

- See code here:
 - https://spark.apache.org/docs/latest/sqlgetting-started.html#creating-datasets

Dataframes

- A DataFrame is a Dataset organized into named columns.
 - It is conceptually equivalent to a table in a relational database or a data frame in R/Python, but with richer optimizations under the hood.
- DataFrames can be constructed from a wide array of sources such as: structured data files, tables in Hive, external databases, or existing RDDs.
- The DataFrame API is available in Scala, Java, Python, and R.
 - In Scala and Java, a DataFrame is represented by a Dataset of Rows.
 - In the Scala API, DataFrameis simply a type alias of Dataset[Row].
 - While, in Java API, users need to use Dataset < Row > to represent a DataFrame.

Creating Dataframes

```
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
Dataset < Row > df = spark.read().json("examples/src/main/resources/people.json");
// Displays the content of the DataFrame to stdout
df.show();
// +----+
// age name
// +---+
// |null|Michael|
// | 30 | Andy
// | 19 | Justin
// +----+
```


Creating Dataframes

```
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
Dataset < Row > df = spark.read().json("examples/src/main/resources/people.json");
// Displays the content of the DataFrame to stdout
df.show();
// +----+
// age name
// +---+
// |null|Michael|
// | 30 | Andy
// | 19 | Justin
// +----+
```


RDDs or Dataframes?

- Probably Datasets and Dataframes
- Finer grained expressiveness allows more fully decoupled DAG for scheduler
 - This means more opportunities for parallelism.

