Introduction to
Apache Spark

Patrick Wendell - Databricks a

What is Spark?

Fast and Expressive Cluster Computing
Engine Compatible with Apache Hadoop

2.5)(les
S Cod
Usable .e

» General execution ¢ Rich APIs in Java,
graphs SCala, Python

. In-memory storage * Interactive shell Sporl"g

[

The Spark Community

March 27th 2010 - November 30th 2013

Commits to master, excluding merge commits

100
50
o - AAA__‘AA‘.‘.AA.ALL“_._L
Apri Julby October 2011 April July October 2012 April July October 2013 April July October
f
S _ o
YaHOO! 725 amazon
&y 8 'ﬁ‘ 7 webservices”
9> WanD MAEL
Hortonworks
SHvalLs
QU/G-\)[{;{?EW TAGGED
= stratio e ?
. MAPR
HHMI ® ® : = N TECHNOLOGIES
f) ADATAD Janeha-f% ©sOOYALA quantiFind tupleump

sharethrough

Contribution Type: Commits ~

Today’s Talk

* The Spark programming model
* Language and deployment choices

« Example algorithm (PageRank)

SparkK

Key Concept: RDD’s

Write programs in terms of operations on

distributed datasets
Resilient Distributed Datasets Operations
« Collections of objects spread « Transformations
across a cluster, stored in RAM (e.g. map, filter,
or on Disk groupBy)
 Built through parallel * Actions
transformations (e.g. count, collect,
« Automatically rebuilt on failure save) Spor‘ll(\z

Example: Log Mining
Load error messages from a log into memory, then
interactively search for various patterns

Uansformed RDD

o Cache 1
lines = sro k. textFile(“hdfs://...") results Worker
errors = lines.filter(lambda s: s.startswith(“ERROR”)) / Elw

messages = errors.map(lambda s: s.split(“\t”)[2]) Driver tasks Block 1

messages.cache()

messages.filter(lambda s: “mysql” in s).count() Cache 2
messages.filter(lambda s: “php” in s).count() Worker

a&ﬁlw

Full-text search of Wikipedia
e 60GB on 20 EC2 machine Block 5 ‘AZ

* 0.5 secvs. 20s for on-disk ~ Spqu(

Scaling Down

100
80
60

4O
20

Execution time (s)

Cache
disabled

25% 50% 75%

% of working set in cache

AN
lw
-2

Fully
cached

Spa

K

Fault Recovery

RDDs track lineage information that can be
used to efficiently recompute lost data

msgs = textFile.filter(lambda s: s.startswith(“ERROR”))
.map(lambda s: s.split(“\t”)[2])

[HDFS File } >[Filtered RDD } {Mapped RDD}
filter map

(func = startsWith(...)) (func = split(...)) J\Z
Spark

Programming with RDD’s

Spark

SparkContext

* Main entry point to Spark functionality

 Available in shell as variable

* |In standalone programs, you'd make your
own (see later for details)

SparkK

Creating RDDs

Turn a Python collection 1nto an RDD
sc.parallelize([1l, 2, 3])

Load text file from local FS, HDFS, or S3
sc.textFile(“file.txt”)
sc.textFile(“directory/*.txt”)
sc.textFile(*hdfs://namenode:9000/path/file”)

Use existing Hadoop InputFormat (Java/Scala only)
sc.hadoopFile(keyClass, valClass, inputFmt, conf)

Spor‘lgZ

Basic Transformations

nums = sc.parallelize([1l, 2, 3])

Pass each element through a function
squares = nums.map(lambda x: x*x) // {1, 4, 9}

Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) // {4}

Map each element to zero or more others
nums.flatMap(lambda x: => range(x))
= {0, 0, 1, 0, 1, 2}
Range object (sequence
of numbers 0, 1, ..., x-1).

Basic Actions

nums = sc.parallelize([1l, 2, 3])

Retrieve RDD contents as a local collection
nums.collect() # => [1, 2, 3]

Return first K elements
nums . take(2) #=> [1, 2]

Count number of elements
nums.count() # => 3

Merge elements with an associative function
nums.reduce(lambda x, y: x +y) # => 6

write elements to a text file
hums.saveAsTextFile(*hdfs://file.txt”) Tﬁz
r

Spa

Working with Key-Value Pairs

Spark’s “distributed reduce” transformations operate on
RDDs of key-value pairs

pair = (a, b)

val pair = (a, b)
pair. 1 // => a
pair. 2 // => b

Tuple2 pair = new Tuple2(a, b);
pair._1 // => a x

-
L §
=

pair. 2 // => b SprK

4

Some Key-Value Operations

pets = sc.parallelize(
[(“cat”, 1), (“dog”, 1), (“cat”, 2)1)
pets.reduceByKey(lambda x, y: X + y)
=> {(cat, 3), (dog, 1}

pets.groupByKey() # => {(cat, [1, 2]), (dog, [1])}
pets.sortByKey() # => {(cat, 1), (cat, 2), (dog, 1)}

reduceBykey also automatically implements
combiners on the map side

Spa

K

Example: Word Count

Tines = sc.textFile(“hamlet.txt”)

counts = lines.flatmap(lambda Tline: Tine.split(® 7))
.map(lambda word => (word, 1))
.reduceByKey(lambda x, y: X + y)

“to” (to, 1)

be, 2
“tobe or” — "be” —> (be, 1) Enoic i)
“or” (or, 1) !
“not” (not, 1) (or. 1)
"notto be” —» “to" — (to, 1) !
\\ 174 ' (tol 2)
be (be, 1)

Spor‘l?z

6.
-
7

Other Key-Value Operat

visits = sc.parallelize([(“index.html”, “1.
(“about.html”, “3.
(“index.html1”, “1.

pageNames = sc.parallelize([(“index.html”, “Home”),
(“about.html”, “About”) 1)

visits.join(pageNames)

(“index.html”, (“1.2.3.4”, “Home”))
(“index.html”, (“1.3.3.1”, “Home”))
(“about.html”, (“3.4.5.6”7, “About”))

visits.cogroup(pageNames)
(“index.html1”, (["1.2.3.4”, “1.3.3.1"
[f t

1, ["Home™]))
(“about.html1”, ([“3.4.5.6”], [“About™]))

.Spor‘l'zZ

Setting the Level of Parallelism

All the pair RDD operations take an optional
second parameter for number of tasks

words.reduceByKey(lambda x, y: x + vy, 5)
words.groupByKey(5)
visits.join(pageviews, 5)

Spor‘lgz

Using Local Variables

Any external variables you use in a closure will
automatically be shipped to the cluster:

query = sys.stdin.readline()
pages.filter(lambda x: query in x).count()

Some caveats:

» Each task gets a new copy (updates aren’t sent back)
* Variable must be Serializable / Pickle-able

» Don't use fields of an outer object (ships all of it!)

Spor‘lgz

Under The Hood: DAG Scheduler

- e S S S S S D D D G G G D G G G G G G GE GEm GE Gaa Baw Bam Gmm mme mmw mmm

General task RN |
graphs L i
. I
Automatically I 1 Stage 1\ () |
' . - - 4« I
pipelines functions E(C:,ﬁ 5. . 27 |
: I Q

Data locality aware ! | i
Partitioning aware || |&& i
: Iy Ty :

to avoid shuffles CGiogen map filter ' Stages |

— e o - O S EE EE EE EE S S EE S S EE S S S S S S S S S S S e s mm P

=RDD (wad = cached partition SpQr"‘(\Z

More RDD Operators

* map
« filter

* groupBy

« sort

* union

 join

« TleftOuterloin
 rightOuterJoin

reduce
count

fold
reduceByKey
groupByKey
cogroup
Cross

Zip

sample
take
first
partitionBy
mapWw1 th
pipe
save

spark’

How to Run Spark

SparkK

Language Support

I5ython Standalone Programs

lines = sc.textFile(...) *Python, Scala, & Java
lines.filter(lambda s: “ERROR” in s).count()

Scala Interactive Shells
» Python & Scala

val lines = sc.textFile(...)
lines.filter(x => x.contains(“ERROR”)).count()

Java Performance

» Java & Scala are faster due
JavaRDD<String> lines = sc.textFile(...); : -
lines.filter(new Function<String, Boo1ean>() { tC)statK:typnng

Boolean call(String s) { : ,
return s.contains(“error”); « ...but Python is often fine

}
P .count(); :I\Z
Spark

Interactive Shell

* The Fastest Way to
Learn Spark

« Available in Python
and Scala

* Runs as an application

on an existing Spark
Cluster...

« OR Can run locally

1

8 06

cloudera-5-testing — root@ip-172-31-11-254:~ — ssh — 85x22

root@ip-172-31-11-254:~ | root@ip-172-31-11-254:~

[root@ip-172-31-11-254 ~]# soptscloudera/parcels/SPARK/pyspark

Welcome to

F R R L S,
OV A A
f__F L TN

/.

version B.8.8

Using Python version 2.6.6 (r266:84202, Sep 11 2012 BB:34:23)
Spark context avaiable as sc.

=== Tile = sc.textFile("hdfs://ip-172-31-11-254,us-west-2.compute.internal:80828/user/

hdfs/ec2-data/pageviews/2087/2007-12/pagecounts-20071209-180000.gz2")

»>» file.count()
B5676RY
=»> file.filter(lambda line: "Holiday" im line).count()

181

Spa

K

... or a Standalone Application

import sys
from pyspark import SparkContext

if __name__ == "__main__":
sc = SparkcContext(“local”, “wordCount”, sys.argv[0],

None)
Tines = sc.textFile(sys.argv[1l])

counts = lines.flatmMap(lambda s: s.split(” 7)) \

.map(lambda word: (word, 1)) \
.reduceByKey(lambda x, y: x + y)

counts.saveAsTextFile(sys.argv[2])

Spa

K

Create a SparkContext

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

val sc = new SparkContext(“url”, “name”, “sparkHome”, Seq(“app.jar”))

Cluster URL, or localy, App | Sparkinstall List of JARs with
/ local[N] name path on cluster app code (to ship)

JavaSparkContext sc = new JavaSparkContext(
“masterurl”, “name”, “sparkHome”, new String[] {“app.jar”}));

import org.apache.

from pyspark import SparkContext
sc = SparkContext(“masterurl”, “name”, “sparkHome”, [“library.py”]))

.S’por‘lgZ

Add Spark to Your Project

 Scala / Java: add a Maven dependency on

groupld: org.spark-project
artifactld: spark-core_2.10
version: 0.9.0

* Python: run program with our pyspark script

SparkK

Administrative GUIs

http://<Standalone Master>:8080 (by default)

800 / | " Spark Master at spark://r *) -

iy
€« — C [Y localhost:8080

quﬁ? Spark Master at spa

URL: spark://mbp-2.local:7077
Workers: 3
Cores: 24 Ti
Memory: 45.0
Applications:

24 Used
B Total, 1536.0 MB Used
Running, 0 Gompleted

Workers

Id
worker-20131802231645-182.168.1.106-56789
worker-20131802231657-192.168.1.106-56801

worker-20131802231705-192.168.1.106-56806

Running Aglplications
MName
app-20131202231712-0000 Spark shell
]

8006 4 ' Spark shell - Spark Stages % | |
& C | localhost:4040/stages/

Environment

Stages Storage

Spariz

Spark Stages

Total Duration: 3.8 m
Scheduling Mode: FIFO
Active Stages: 0
Completed Stages: 2
Failed Stages: 0

Active Stages (0)

Stage Id Description Submitted

Completed Stages (2)

Stage Id Description
0 count at <console>:13

1 reduceByKey at <console>:13

Failed Stages (0)

Stage Id Description Submitted

Executors

Duration

Submitted
2013/12/02 21:07:55
2013/12/02 21:07:55

Duration

Tasks: Succeeded/Total Shuffle Read
Duration Tasks: Succeeded/Total Shuffle
83 ms — L s 754.0 B
345 ms ——

Tasks: Succeeded/Total Shuffle Read

Software Components

 Spark runs as a library in your Your application
program (1 instance per app) SparkContext
* Runs tasks locally or on
lust Cluster Local
ClUster NERETE threads
— Mesos, YARN or standalone " .
mode Worker [l Worker

. Spark Spark
* Accesses storage systems via JEUGE RCEICL

Hadoop InputFormat API Y

— Can use HBase, HDFS, S3, ...
K

Spa

EXAMPLE APPLICATION: PAGERANK

Spor‘lgz

Example: PageRank

* Good example of a more complex
algorithm

— Multiple stages of map & reduce

 Benefits from Spark’s in-memory caching
— Multiple iterations over the same data

SparkK

Basic Idea

Give pages ranks
(scores) based on links
to them

* Links from many
pages =» high rank

* Link from a high-rank
page =» high rank

Image: en.wikipedia.org/wiki/File:PageRank-hi-res-2.png

Algorithm

1. Start each page at a rank of 1

2. On each iteration, have page p contribute
rank,, / [neighbors | to its neighbors

3. Seteach page'srank to 0.15 + 0.85 X contribs

1.0

TS

1.0

Spor‘l?z

Algorithm

1. Start each page at a rank of 1

2. On each iteration, have page p contribute
rank,, / [neighbors | to its neighbors

3. Seteach page'srank to 0.15 + 0.85 X contribs

1.0

Spor‘l?z

Algorithm

1. Start each page at a rank of 1

2. On each iteration, have page p contribute
rank,, / [neighbors | to its neighbors

3. Seteach page'srank to 0.15 + 0.85 X contribs

1.85

LTS

0.58

Spor‘l?z

Algorithm

1.
2.

Start each page at a rank of 1

On each iteration, have page p contribute
rank,, / [neighbors | to its neighbors

Set each page's rank to 0.15 + 0.85 X contribs

1.85
0.58 0.5
o 1.85
0.5 0.29 1.0
rh 0.5
0.58

Spa

K

Algorithm

1. Start each page at a rank of 1

2. On each iteration, have page p contribute
rank,, / [neighbors | to its neighbors

3. Seteach page'srank to 0.15 + 0.85 X contribs

e Sl

0.58

.S’por‘lgZ

Algorithm

1. Start each page at a rank of 1

2. On each iteration, have page p contribute
rank,, / [neighbors | to its neighbors

3. Seteach page'srank to 0.15 + 0.85 X contribs

Final state: 1.44

073 Spor‘l?z

Scala Implementation

// load RDD of (url, neighbors) pairs
// load RDD of (url, rank) pairs

val 1links
var ranks

for (i <- 1 to ITERATIONS) {
val contribs = Tinks.join(ranks).flatmMap {
case (url, (links, rank)) =>
Tinks.map(dest => (dest, rank/links.size))
}
ranks = contribs.reduceBykKey(_ + _)
.mapvalues(0.15 + 0.85 * _)
}

ranks.saveAsTextFile(...)

Spa

K

PageRank Performance

—i
200 ™~
@ 150 I W Hadoop
3 o W Spark
E 100 %
c N I
2 50 ~ <
© i
3 I ,
£ 0 -
30 60
Number of machines "\Z
Spark

Other Iterative Algorithms

W Hadoop

K-Means Clustering W 155

0 30 60 90 120 150 180

W | | T
Logistic Regression
5 5 0.96 O‘

0 25 50 75 100 125

W Spark

Time per lteration (s) SpQI"IQZ

CONCLUSION

Spark

Conclusion

» Spark offers a rich APl to make data
analytics fast. both fast to write and fast to
run

* Achieves 100x speedups in real
applications

» Growing community with 25+ companies
contributing

SparkK

Get Started

Up and Running in a Few
Steps

« Download
* Unzip
* Shell

Project Resources

» Examples on the Project
Site

« Examples in the Distribution

« Documentation

http://spark.incubator.apache.org

ﬁApache Spark - Lightning =

C' [spark.incubator.apache.org

Spar

Lightning-Fast Cluster Computing

Home Downloads Documentation Examples

What is Apache Spark?

Apache Spark is an open source cluster computing system that aims to
make data analytics fast — both fast to run and fast to write.

To run programs faster, Spark offers a general execution model that can
optimize arbitrary operator graphs, and supports in-memory computing,
which lets it query data faster than disk-based engines like Hadoop.

To make proegramming faster, Spark provides clean, concise APIs in Scala,
Java and Python. You can also use Spark interactively from the Scala and
Python shells to rapidly query big datasets.

What can it do?

Spark was initially developed for two applications where placing data in
memory helps: iterative algorithms, which are common in machine
learning, and interactive data mining. In both cases, Spark can run up to
100x faster than Hadoop MapReduce. However, you can use Spark for
general data processing too. Check out our example jobs.

Spark is also the engine behind Shark, a fully Apache Hive-compatible
data warehousing system that can run 100x faster than Hive.

While Spark is a new engine, it can access any data source supported by
Hadoop, making it easy to run over existing data.

Who uses it?

Spark was initially created in the UC Berkeley AMPLab, but is now being
used and developed at a wide array of companies. See our powered by

Sign up now!
Dec 2-3, 2013
San Francisco

Mailing Lists Rese; FAQ

LATEST NEWS

Announcing the first Spark Summit:
December 2, 2013 (October OB, 2013)

Spark 0.8.0 released (September 25, 2013)

Spark user survey and "Powered By" page
(September 05, 2013)

Fourth Spark screencast released (August
27, 2013)

News Archive

file = spark.textFile("hdfs://...")

file.flatMap(line = line.split(" "J)
.map{word => (word, 1))
JreduceByKey(_ + _J

Word Count implemented in Spark

“Hadoop ®Spark

Datasets And Dataframes

 https.//spark.apache.org/docs/latest/sql-
programming-guide.html

SparkK

Dataset

A Dataset is a distributed collection of data.

Like RDDs: Strong typing, ability to use powerful lambda functions
Plus the benefits of Spark SQL's optimized execution engine.

A Dataset can be constructed from JVM objects and then manipulated
using functional transformations (map, flatMap, filter, etc.).

The Dataset API is available in Scala and Java.

Python does not have the support for the Dataset API. But due to
Python’s dynamic nature, many of the benefits of the Dataset API are
already available

* i.e. you can access the field of a row by name naturallyrow.columnName).

The case for R is similar to Python

Spor‘lgz

DataSets

- Datasets are similar to RDDs, however, instead of using Java
serialization or Kryo they use a specialized Encoder to serialize
the objects for processing or transmitting over the network.

« While both encoders and standard serialization are responsible for
turning an object into bytes, encoders are code generated
dynamically and use a format that allows Spark to Eerform many
operations like filtering, sorting and hashing without
deserializing the bytes back into an object

 Data sets also expose more internals to query planning (expressions,
fields, etc)

https://spark.apache.org/docs/latest/sql-getting-started.html#creating-datasets Spqr’(

https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.Encoder

Creating Datasets

* See code here;

— https://spark.apache.org/docs/latest/sql-
getting-started.html#creating-datasets

SparkK

Dataframes

* A DataFrame is a Dataset organized into named columns.

— Itis conceptually equivalent to a table in a relational database or
a data frame in R/Python, but with richer optimizations under

the hood.

- DataFrames can be constructed from a wide array
of sources such as: structured data files, tables in Hive,

external databases, or existing RDDs.
« The DataFrame API is available in Scala, Java, Python, and R.

— In Scala and Java, a DataFrame is represented by a Dataset
of Rows.
— In the Scala API, DataFrameis simply a type alias of Dataset[Row].
— While, in Java API, users need to use Dataset<Row> to represent
a DataFrame.

N

<
Spark™

Creating Dataframes

import org.apache.spark.sqgl.Dataset;
import org.apache.spark.sql.Row;

Dataset<Row> df = spark.read().json("examples/src/main/resources/people.json");

// Displays the content of the DataFrame to stdout
df.show();

/] +--——t--mm-- +

// | age| name|

/] +----+------- +

// |null|Michael|

//'| 30 Andy]|

//| 19| Justin|

/] +--——t------ +

K

https://spark.apache.org/docs/latest/sql-getting-started.html#creating-dataframes Spr

Creating Dataframes

import org.apache.spark.sqgl.Dataset;
import org.apache.spark.sql.Row;

Dataset<Row> df = spark.read().json("examples/src/main/resources/people.json");

// Displays the content of the DataFrame to stdout
df.show();

/] +--——t--mm-- +

// | age| name|

/] +----+------- +

// |null|Michael|

//'| 30 Andy]|

//| 19| Justin|

/] +--——t------ +

K

https://spark.apache.org/docs/latest/sql-getting-started.html#creating-dataframes Spr

RDDs or
Datasets and Dataframes?
» Probably Datasets and Dataframes

 Finer grained expressiveness allows more
fully decoupled DAG for scheduler

— This means more opportunities for parallelism.

SparkK

