
Dynamo: Amazon’s Highly 

Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun,

Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan 
Sivasubramanian, Peter Vosshall

and Werner Vogels



Motivation

 Build a distributed storage system:

 Scale

 Simple: key-value

 Highly available

 Guarantee Service Level Agreements (SLA)



System Assumptions and Requirements

 Query Model: simple read and write operations to a data 

item that is uniquely identified by a key.

 ACID Properties: Atomicity, Consistency, Isolation, 

Durability.

 Efficiency: latency requirements which are in general 

measured at the 99.9th percentile of the distribution.

 Other Assumptions: operation environment is assumed 

to be non-hostile and there are no security related requirements 

such as authentication and authorization.



Service Level Agreements (SLA)

 Application can deliver its 

functionality in a bounded 

time: Every dependency in the 

platform needs to deliver its 

functionality with even tighter 

bounds.

 Example: service guaranteeing 

that it will provide a response within 

300ms for 99.9% of its requests for a 

peak client load of 500 requests per 

second.

Service-oriented architecture of 

Amazon’s platform



Design Consideration

 Sacrifice strong consistency for availability

 Conflict resolution is executed during read

instead of write, i.e. “always writeable”.

 Other principles:

 Incremental scalability.

 Symmetry.

 Decentralization.

 Heterogeneity.



Summary of techniques used in Dynamo 

and their advantages

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

High Availability for writes
Vector clocks with reconciliation 

during reads

Version size is decoupled from 

update rates.

Handling temporary failures Sloppy Quorum and hinted handoff
Provides high availability and 

durability guarantee when some of 

the replicas are not available.

Recovering from permanent 

failures
Anti-entropy using Merkle trees

Synchronizes divergent replicas in 

the background.

Membership and failure detection
Gossip-based membership protocol 

and failure detection.

Preserves symmetry and avoids 

having a centralized registry for 

storing membership and node 

liveness information.



Partition Algorithm

 Consistent hashing: the output 

range of a hash function is treated as a 

fixed circular space or “ring”.

 ”Virtual Nodes”: Each node can 

be responsible for more than one 

virtual node.



Advantages of using virtual nodes

 If a node becomes unavailable the 

load handled by this node is evenly 

dispersed across the remaining 

available nodes.

 When a node becomes available 

again, the newly available node 

accepts a roughly equivalent 

amount of load from each of the 

other available nodes.

 The number of virtual nodes that a 

node is responsible can decided 

based on its capacity, accounting 

for heterogeneity in the physical 

infrastructure.



Replication

 Each data item is 

replicated at N hosts.

 “preference list”: The list of 

nodes that is responsible 

for storing a particular key.



Data Versioning

 A put() call may return to its caller before the 

update has been applied at all the replicas

 A get() call may return many versions of the 

same object.

 Challenge: an object having distinct version sub-histories, 

which the system will need to reconcile in the future.

 Solution: uses vector clocks in order to capture causality 

between different versions of the same object.



Vector Clock

 A vector clock is a list of (node, counter) 

pairs.

 Every version of every object is associated 

with one vector clock.

 If the counters on the first object’s clock are 

less-than-or-equal to all of the nodes in the 

second clock, then the first is an ancestor of 

the second and can be forgotten.



Vector clock example



Execution of get () and put () 

operations

1. Route its request through a generic load 

balancer that will select a node based on 

load information.

2. Use a partition-aware client library that 

routes requests directly to the appropriate 

coordinator nodes.



Sloppy Quorum

 R/W is the minimum number of nodes that 
must participate in a successful read/write 
operation.

 Setting R + W > N yields a quorum-like 
system.

 In this model, the latency of a get (or put) 
operation is dictated by the slowest of the R 
(or W) replicas. For this reason, R and W are 
usually configured to be less than N, to 
provide better latency.



Hinted handoff

 Assume N = 3. When A 

is temporarily down or 

unreachable during a 

write, send replica to D.

 D is hinted that the 

replica is belong to A and 

it will deliver to A when A 

is recovered.

 Again: “always writeable”



Other techniques

 Replica synchronization: 

 Merkle hash tree.

 Membership and Failure Detection: 

 Gossip



Implementation

 Java

 Local persistence component allows for 

different storage engines to be plugged in:

 Berkeley Database (BDB) Transactional Data 

Store: object of tens of kilobytes

 MySQL: object of > tens of kilobytes

 BDB Java Edition, etc.



Evaluation



Evaluation


