
Docker Overview

Rohit Jnagal, Docker Meetup, Bangalore

jnagal@

Containerizing everything @ Google

Containers at scale.

Resource Isolation.

lmctfy

libcontainer

https://github.com/google/lmctfy
https://github.com/dotcloud/docker/tree/master/pkg/libcontainer

Docker : What & Why

Machine or Application containers

Build Once, Configure Once.

Deploy Everything*

Everywhere*

Reliably & Consistently

Efficiently

Cheaply

Docker Features

Change
Management

Resource
Isolation

File system
Isolation

Network
Isolation

Image
Management

Sharing
Process

Management

Docker Components

Docker Grounds up: Resource Isolation

Cgroups : Isolation and accounting

● cpu

● memory

● block i/o

● devices

● network

● numa

● freezer

image credit: mairin

http://mairin.wordpress.com/2011/05/13/ideas-for-a-cgroups-ui/

Docker Grounds up: Namespaces

● Process trees.

● Mounts.

● Network.

● User accounts.

● Hostnames.

● Inter-process

communication.

pid_t pid = clone(..., flags, ...)

CLONE_NEWUTS hostname,

domainname

CLONE_NEWIPC IPC objects

CLONE_NEWPID Process IDs

CLONE_NEWNET Network

configuration

CLONE_NEWNS File system mounts

CLONE_NEWUSER User and

Group IDs

setns(int fd, int nstype)

CLONE_NEWIPC

CLONE_NEWNET

CLONE_NEWUTS

Also: unshare(flags)

Docker Grounds up: Add Security

● Linux Capabilities

○ Drops most capabilities.

○ Enable what a task needs.

● GRSEC and PAX

● SELinux

● AppArmor

image credit: Leo Reynolds

https://www.flickr.com/photos/lwr/

Docker Grounds up: Filesystem

File-system Isolation:

Building a rootfs dir and chroot into it.

With mount namespace, use pivot-root.

Features:

Layering, CoW, Caching, Diffing

Solutions:

UnionFS, Snapshotting FS, CoW block devices

Docker Grounds up: Filesystem

From: Jérôme Petazzoni

Docker Grounds up: Processes & Networking

We have resources, isolation, and file system management.

Docker daemon handles starting/stopping processes with:

Attach logic

Logs

TTY management

Docker run options

Events and container state

Network Management

NAT, Bridge, Veth

Expose

Links

Docker Grounds up: Images

Create and share images

Push, pull, commit images.

Registry (public, private) and index.

Dockerfiles

Orchestration:

Linking Containers

Multi-host linking

Dynamic discovery

image: jbarratt

https://github.com/jbarratt/dockertalk

Docker Codewalk

github.com/dotcloud/docker/

api : docker client and server api

daemon : Managing containers and images

engine: commands/jobs processing

graph: store for versioned filesystem images and their relationship.

registry: handling registry and repository.

links: Linking containers.

integration-cli: Integration tests.

docs: documentation.

pkg: collection of standalone utility packages that are not docker specific.

sdd -> Great place to start contributing.

Time for actual walkthrough...

Docker Codewalk : docker/daemon

Exec Driver Graph DriverNetwork Driver

Docker
Daemon

LXC Native AUFS BTRFS DevMapper

Docker Codewalk : pkg

github.com/dotcloud/docker/pkg

libcontainer: cgroup and namespaces. Uses lot of other utility packages.

nsinit binary.

apparmor, selinux, label : applying security profiles.

mount, signals : system utilities.

iptables, networkfs, netlink : network utilities.

term: terminal handling

systemd

Let’s look through some of these.

Thanks!

Rohit Jnagal

jnagal@google
@jnagal

Kesden Additional Slide:

• VMs vs Containers
• VMs virtualize Hardware, OS, etc

• Containers virtualize application environment

● Containers may not provide as strong a security model

• What is virtualized? What is real?

• What about the super users?

• Things that are sideways, e.g. virtual file system, devices, etc

● Generally use containers to virtualize for one application in shared host or VM

● Use VMs to virtualize for many applications

● VMs probably 2-3x as resource intensive as containers

• Corollary: Can get 2-3x as much from containerized solution vs VMs

