14-736:
DISTRIBUTED SYSTEMS

LECTURE 4 * FEBRUARY 5,2018 * SPRING 2018 (KESDEN)

NOT DISTRIBUTED SYSTEMS

Today is a review of what you may have learned in a prior systems class

It has nothing to do with distributed systems

I’'m wedging it in here, because it is good for you to know

It is also important to know how distributed techniques compare

* Distributed synchronization is our next topic

CONCURRENCY

* It doesn’t matter how it arises:
* True parallelism (multi-core, multi-processor)
* Scheduler interleaving

* Processes, Threads

* Sharing is dangerous!
 Classing “Missed update” problem
* Read-Update-Write, Read-Update-Write Interleaving

* Vocabulary:

* Ciritical resource — shared resource that can’t naturally be safely shared (without help)

* Critical section — code that manipulates the critical resource while being shared

EXAMPLE FROM 213/513/600

Asm code for thread i

movqg (%rdi), S%rcx

testqg %rcx, srcx Pﬁ-liead
jle .L2 P
C code for counter loop in thread i --_1_3__‘_“_‘?‘_’_1_____%9_'___9_6_“:?_’_‘ _____________
for (i = 0; i < niters; i++) movqg cnt(%$rip),%rdx L, : Load cnt
cnt++; addg $1, %rdx U. : Update cnt

movqg %rdx, cnt(%rip) |) S;:Store cnt
cmpg 3%rcx, 3rax
jne .L3

L2:

} T, :Tail

EXAMPLE FROM 213/513/600

m Key idea: In general, any sequentially consistent interleaving
is possible, but some give an unexpected result!

i (thread) instr; %rdx, %rdx, cnt

* |. denotes that thread i
executes instruction |

* %rdx;is the content of %rdx in
thread i’s context

=
X
=

Thread 1
critical section

e

Thread 2
critical section

=

N
== O
1

N

N

N
NININ|=|

N

RINININININ|(R[R([(-
—|—|U"C\|,_IU5CI_

1
NININIR[(=|=|I=I[OIO|IO

=y
=
]

OK

EXAMPLE FROM 213/513/600

m Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2

i (thread) instr; %rdx, %rdx, cnt

1 H, - - 0
1 L, 0 - 0
1 U, 1 - 0
2 H, - - 0
2 L, - 0
1 S, 1 - 1
1 T, 1 - 1
2 u, - 1 1
2 S, - 1 1
2 T, - 1 1 Oops!

VISUALIZING
CONCURRENCY

Thread 2

safe

Def: A trajectory is safe iff it does
not enter any unsafe region

Claim: A trajectory is correct (wrt
cnt) iff it is safe

.
L

Unsafe region

CLASSIC MECHANISM

* Atomic compare-and-swap/test-and-set instructions
* Provides value and mutates
* Lock: while (CS<I,x>);
* Unlock:x =0

* Classic spin-lock
* Requires locking memory bus on multi-core/multi-processor

* Busy wait not good for high contention

* But good for low contention

FUTEX — OPTIMIZATION IN LINUX

Much like classic spin-lock, but less spinning.

Shared memory is in user space

Queues in kernel space if locked

Decreases spin time

Tricky to make robust

Take 15-605 for details

OTHER TECHNIQUES:
AVOID CONCURRENCY

* Raise kernel interrupt level (for kernel code)

* Very costly

* Block processes or threads in schedule

* Great for threads, user-space things

* Still takes lower level concurrency control to protect queues, etc.

MUTUAL EXCLUSION

* Policy of one user at a time among many

* A single user of critical section excludes other by mutual agreement

* What is the mutual agreement? Use of synchronization primitive in code

* Spin locks, futexes classically wrapped in primitives

* mutex_acquire()/mutex_lock()

* mutex_release()/ mutex_unlock()

OTHER DISCIPLINES:
AT MOST N

* Mutual exclusion isn’t the only policy.
¢ At-Most-N is common

* N buffers available, etc

* Enter “Semaphores”
* P operation: Wait for resource to be available
* and decrement internal count when caller gets it
* V operation: Make resource available

* and increment internal count of resources

* also “wake up” anyone waiting

* No “Peek” (can’t be useful)

* Not necessarily FCFC, unless guaranteed

* Internal queuing may use a spin lock

SEMPAPHORE IMPLEMENTATION:
WITH MUTEXES

P (csem) { V (csem)
while (1) { {

acquire_mutex (csem.mutex); acquire_mutex (csem.mutex);

if (csem.value <= 0) { csem.value = csem.value + |;
release_mutex (csem.mutex); release_mutex (csem.mutex);
continue; }

}

else {

csem.value = csem.value — [;

release_mutex (csem.mutex);
break;

SEMAPHORE IMPLEMENTATION:
HELP FROM OS/THREAD SCHEDULER

Deschedule (move to blocked queue) blocked thread or process

* Then there is no spinning

Reschedule (move to ready queue) when resource available

* Will need to recheck availability, of course

Much more efficient

But, doesn’t eliminate lower level blocking

* Just moves it to the queue

* Queue operations are fast, so lower contention, so less blocking

PRIMITIVES SO FAR:
MUTEXES, SEMPAHORES

* Mutexes/Futexes

* Enforce mutual exclusion

* Can be used to develop more complex policies based upon mutually exclusive access to state

variables

* Consider semaphore implementation

* Conceptually “lock and unlock” one or more associated resources.

* Semaphores
* At-Most-N policies

* At-Most-| is a special case usage,“Binary Semaphore”,and is like a mutex.

* Conceptually, manages a pool of resources.

CONDITION VARIABLES

* Used to block while waiting for an event
* Don’t count resources like semaphores
* Don’t lock like mutexes
* No predicate

* Wit for event

* Operations:
* Wait — always waits. No predicate
* Signal —Wake up a waiter

* Broadcast —Wake up all waiters.

* Uses:

¢ Other synchronization primitives

* Wiaiting for things like buffers or pages of memory

CONDITION VARIABLES:
ADDING A PREDICATE

o c 5 ; i s b S £ S
* A wait that always waits is known as a sleep. Void wait (condition *cv, mutex *mx)

{

mutex_acquire(&c->listLock); /* protect the queue */

» CV waits work with mutexes to enable a enqueue (&c->next, &c->prev, thr_self()); /* enqueue */
mutex_release (&c->listLock); /* we're done with the list */

* Not very useful for concurrency control

predicate

/* The suspend and release_mutex() operation should be atomic */
release_mutex (mx));
thr_suspend (self); /* Sleep 'til someone wakes us */

mutex_acquire (mx); /*VWoke up -- our turn, get resource lock */

return;

CONDITION VARIABLES:
SIGNAL IMPLEMENTATION

void signal (condition *c)

{
thread_id tid;

mutex_acquire (c->listlock); /* protect the queue */
tid = dequeue(&c->next, &c->prev);
mutex_release (listLock);

if (tid>0)
thr_continue (tid);

return;

}

CONDITION VARIABLES:
EXAMPLE LOCK FROM CVS

spin_lock s;
GetlLock (condition cv, mutex mx) ReleaseLock (condition cv, mutex mx)
{ {

mutex_acquire (mx); mutex_acquire (mx); /* Prevent lost wake-up */

while (LOCKED) lock = UNLOCKED;

wait (¢, mx); signal (cv);
mutex_release (mx);
lock=LOCKED; }

mutex_release (mx);

SEMAPHORES FROM CONDITION VARIABLES

void semP (sem *s)
{
mutex_acquire (s->mutex);
while (s->count <)
cond_wait(s->cv, s->mutex);
s->count--;
mutex_release (s->mutex);

}

void semV(sem *s) {
mutex_acquire (s->mutex); /* Prevent lost wake-up */
cond_signal(s->cv);
mutex_release (s->mutex);

CONDITION VARIABLES

* Very common use is in implementation of “Monitors”
* A high-level protected box for critical
* Only one of associated methods can run at a time

* Scheduling has to account for blocking within methods, etc.

* |5-605 for details

* Common example of a Monitor paradigm

* Java synchronized methods

PRIMITIVES

* Mutexes — Mutual Exclusion

* Semaphores — Pools of equivalent resources

* Condition Variables -- Events

COMMON REQUIREMENT

* Shared memory with atomic instructions

* Global scheduler managing concurrency for efficiency

* Parallelism and interleaving

* Do we have these in distributed systems?

* Can we get them!?

