
14-736:
DISTRIBUTED SYSTEMS
LECTURE 4 * FEBRUARY 5, 2018 * SPRING 2018 (KESDEN)

NOT DISTRIBUTED SYSTEMS

• Today is a review of what you may have learned in a prior systems class

• It has nothing to do with distributed systems

• I’m wedging it in here, because it is good for you to know

• It is also important to know how distributed techniques compare

• Distributed synchronization is our next topic

CONCURRENCY

• It doesn’t matter how it arises:

• True parallelism (multi-core, multi-processor)

• Scheduler interleaving

• Processes,Threads

• Sharing is dangerous!

• Classing “Missed update” problem

• Read-Update-Write, Read-Update-Write Interleaving

• Vocabulary:

• Critical resource – shared resource that can’t naturally be safely shared (without help)

• Critical section – code that manipulates the critical resource while being shared

EXAMPLE FROM 213/513/600

for (i = 0; i < niters; i++)

cnt++;

C code for counter loop in thread i

movq (%rdi), %rcx

testq %rcx,%rcx

jle .L2

movl $0, %eax

.L3:

movq cnt(%rip),%rdx

addq $1, %rdx

movq %rdx, cnt(%rip)

addq $1, %rax

cmpq %rcx, %rax

jne .L3

.L2:

Hi : Head

Ti : Tail

Li : Load cnt

Ui : Update cnt

Si : Store cnt

Asm code for thread i

EXAMPLE FROM 213/513/600

 Key idea: In general, any sequentially consistent interleaving
is possible, but some give an unexpected result!

H1

L1

U1

S1

H2

L2

U2

S2

T2

T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instri cnt%rdx1

OK

-
-
-
-
-
1
2
2
2
-

%rdx2

Thread 1
critical section

Thread 2
critical section

• Ii denotes that thread i
executes instruction I

• %rdxi is the content of %rdx in
thread i’s context

EXAMPLE FROM 213/513/600

 Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2

H1

L1

U1

H2

L2

S1

T1

U2

S2

T2

1
1
1
2
2
1
1
2
2
2

-
0
1
-
-
1
1
-
-
-

0
0
0
0
0
1
1
1
1
1

i (thread) instri cnt%rdx1

-
-
-
-
0
-
-
1
1
1

%rdx2

Oops!

VISUALIZING
CONCURRENCY

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

Unsafe region

Def: A trajectory is safe iff it does
not enter any unsafe region

Claim: A trajectory is correct (wrt
cnt) iff it is safe unsafe

safe

CLASSIC MECHANISM

• Atomic compare-and-swap/test-and-set instructions

• Provides value and mutates

• Lock: while (CS<1,x>);

• Unlock: x = 0

• Classic spin-lock

• Requires locking memory bus on multi-core/multi-processor

• Busy wait not good for high contention

• But good for low contention

FUTEX – OPTIMIZATION IN LINUX

• Much like classic spin-lock, but less spinning.

• Shared memory is in user space

• Queues in kernel space if locked

• Decreases spin time

• Tricky to make robust

• Take 15-605 for details

OTHER TECHNIQUES:
AVOID CONCURRENCY

• Raise kernel interrupt level (for kernel code)

• Very costly

• Block processes or threads in schedule

• Great for threads, user-space things

• Still takes lower level concurrency control to protect queues, etc.

MUTUAL EXCLUSION

• Policy of one user at a time among many

• A single user of critical section excludes other by mutual agreement

• What is the mutual agreement? Use of synchronization primitive in code

• Spin locks, futexes classically wrapped in primitives

• mutex_acquire()/mutex_lock()

• mutex_release()/ mutex_unlock()

OTHER DISCIPLINES:
AT MOST N

• Mutual exclusion isn’t the only policy.

• At-Most-N is common

• N buffers available, etc

• Enter “Semaphores”

• P operation: Wait for resource to be available

• and decrement internal count when caller gets it

• V operation: Make resource available

• and increment internal count of resources

• also “wake up” anyone waiting

• No “Peek” (can’t be useful)

• Not necessarily FCFC, unless guaranteed

• Internal queuing may use a spin lock

SEMPAPHORE IMPLEMENTATION:
WITH MUTEXES

P (csem) {

while (1) {

acquire_mutex (csem.mutex);

if (csem.value <= 0) {

release_mutex (csem.mutex);

continue;

}

else {

csem.value = csem.value – 1;

release_mutex (csem.mutex);

break;

}

}

}

V (csem)

{

acquire_mutex (csem.mutex);

csem.value = csem.value + 1;

release_mutex (csem.mutex);

}

SEMAPHORE IMPLEMENTATION:
HELP FROM OS/THREAD SCHEDULER

• Deschedule (move to blocked queue) blocked thread or process

• Then there is no spinning

• Reschedule (move to ready queue) when resource available

• Will need to recheck availability, of course

• Much more efficient

• But, doesn’t eliminate lower level blocking

• Just moves it to the queue

• Queue operations are fast, so lower contention, so less blocking

PRIMITIVES SO FAR:
MUTEXES, SEMPAHORES

• Mutexes/Futexes

• Enforce mutual exclusion

• Can be used to develop more complex policies based upon mutually exclusive access to state

variables

• Consider semaphore implementation

• Conceptually “lock and unlock” one or more associated resources.

• Semaphores

• At-Most-N policies

• At-Most-1 is a special case usage, “Binary Semaphore”, and is like a mutex.

• Conceptually, manages a pool of resources.

CONDITION VARIABLES

• Used to block while waiting for an event

• Don’t count resources like semaphores

• Don’t lock like mutexes

• No predicate

• Wait for event

• Operations:

• Wait – always waits. No predicate

• Signal – Wake up a waiter

• Broadcast – Wake up all waiters.

• Uses:

• Other synchronization primitives

• Waiting for things like buffers or pages of memory

CONDITION VARIABLES:
ADDING A PREDICATE

• A wait that always waits is known as a sleep.

• Not very useful for concurrency control

• CV waits work with mutexes to enable a

predicate

void wait (condition *cv, mutex *mx)

{

mutex_acquire(&c->listLock); /* protect the queue */

enqueue (&c->next, &c->prev, thr_self()); /* enqueue */

mutex_release (&c->listLock); /* we're done with the list */

/* The suspend and release_mutex() operation should be atomic */

release_mutex (mx));

thr_suspend (self); /* Sleep 'til someone wakes us */

mutex_acquire (mx); /* Woke up -- our turn, get resource lock */

return;

}

CONDITION VARIABLES:
SIGNAL IMPLEMENTATION

void signal (condition *c)

{

thread_id tid;

mutex_acquire (c->listlock); /* protect the queue */

tid = dequeue(&c->next, &c->prev);

mutex_release (listLock);

if (tid>0)

thr_continue (tid);

return;

}

CONDITION VARIABLES:
EXAMPLE LOCK FROM CVS

spin_lock s;

GetLock (condition cv, mutex mx)

{

mutex_acquire (mx);

while (LOCKED)

wait (c, mx);

lock=LOCKED;

mutex_release (mx);

ReleaseLock (condition cv, mutex mx)

{

mutex_acquire (mx); /* Prevent lost wake-up */

lock = UNLOCKED;

signal (cv);

mutex_release (mx);

}

SEMAPHORES FROM CONDITION VARIABLES

void semP (sem *s)

{

mutex_acquire (s->mutex);

while (s->count < 1)

cond_wait(s->cv, s->mutex);

s->count--;

mutex_release (s->mutex);

}

void semV(sem *s) {

mutex_acquire (s->mutex); /* Prevent lost wake-up */

cond_signal(s->cv);

mutex_release (s->mutex);

}

CONDITION VARIABLES

• Very common use is in implementation of “Monitors”

• A high-level protected box for critical

• Only one of associated methods can run at a time

• Scheduling has to account for blocking within methods, etc.

• 15-605 for details

• Common example of a Monitor paradigm

• Java synchronized methods

PRIMITIVES

• Mutexes – Mutual Exclusion

• Semaphores – Pools of equivalent resources

• Condition Variables -- Events

COMMON REQUIREMENT

• Shared memory with atomic instructions

• Global scheduler managing concurrency for efficiency

• Parallelism and interleaving

• Do we have these in distributed systems?

• Can we get them?

