
14-736
Distributed Systems

Lecture 26:

Internet Routing as a DS Problem

2

Outline

• Intro

• Distance Vector

• Link State

3

Graph Model

• Represent each router as node

• Direct link between routers represented by edge

• Symmetric links  undirected graph

• Edge “cost” c(x,y) denotes measure of difficulty of using link

• delay, $ cost, or congestion level

• Task

• Determine least cost path from every node to every other node

• Path cost d(x,y) = sum of link costs

A

E

F

C

D

B

2

3

6

4

1

1

1

3

4

Routes from Node A

• Properties

• Some set of shortest paths forms tree

• Shortest path spanning tree

• Solution not unique

• E.g., A-E-F-C-D also has cost 7

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Forwarding Table for A

Dest Cost Next

Hop

A 0 A

B 4 B

C 6 E

D 7 B

E 2 E

F 5 E

Key Challenges

• This would be easy if the graph didn’t change

• But, what happens as links are removed and are added?

• Links fail

• Links heal

• Internet routing is basically a big distributed agreement

problem

• If routers agree on the graph, they can make consistent

decisions

• If routers disagree on the graph, badness can happen

• Cycles are a notable problem

• Lost packets are another (time out)

5

6

Ways to Compute Shortest Paths

• Centralized
• Collect graph structure in one place

• Use standard graph algorithm

• Disseminate routing tables

• Link-state
• Every node collects complete graph structure

• Each computes shortest paths from it

• Each generates own routing table

• Distance-vector
• No one has copy of graph

• Nodes construct their own tables iteratively

• Each sends information about its table to neighbors

7

Outline

• Intro

• Distance Vector

• Link State

8

Distance-Vector Method

• Idea

• At any time, have cost/next hop of best known path to destination

• Use cost  when no path known

• Initially

• Only have entries for directly connected nodes

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Initial Table for A

Dest Cost Next

Hop

A 0 A

B 4 B

C  –

D  –

E 2 E

F 6 F

9

Distance-Vector Update

• Update(x,y,z)

d  c(x,z) + d(z,y) # Cost of path from x to y with first hop z

if d < d(x,y)

Found better path

return d,z # Updated cost / next hop

else

return d(x,y), nexthop(x,y) # Existing cost / next hop

x

z

y

c(x,z)

d(z,y)

d(x,y)

10

Algorithm

• Bellman-Ford algorithm

• Repeat

For every node x

For every neighbor z

For every destination y

d(x,y)  Update(x,y,z)

• Until converge

11

Start

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Table for A

Dst Cst Hop

A 0 A

B 4 B

C  –

D  –

E 2 E

F 6 F

Table for B

Dst Cst Hop

A 4 A

B 0 B

C  –

D 3 D

E  –

F 1 F

Table for C

Dst Cst Hop

A  –

B  –

C 0 C

D 1 D

E  –

F 1 F

Table for D

Dst Cst Hop

A  –

B 3 B

C 1 C

D 0 D

E  –

F  –

Table for E

Dst Cst Hop

A 2 A

B  –

C  –

D  –

E 0 E

F 3 F

Table for F

Dst Cst Hop

A 6 A

B 1 B

C 1 C

D  –

E 3 E

F 0 F

Optimum 1-hop paths

12

Iteration #1

Table for A

Dst Cst Hop

A 0 A

B 4 B

C 7 F

D 7 B

E 2 E

F 5 E

Table for B

Dst Cst Hop

A 4 A

B 0 B

C 2 F

D 3 D

E 4 F

F 1 F

Table for C

Dst Cst Hop

A 7 F

B 2 F

C 0 C

D 1 D

E 4 F

F 1 F

Table for D

Dst Cst Hop

A 7 B

B 3 B

C 1 C

D 0 D

E  –

F 2 C

Table for E

Dst Cst Hop

A 2 A

B 4 F

C 4 F

D  –

E 0 E

F 3 F

Table for F

Dst Cst Hop

A 5 B

B 1 B

C 1 C

D 2 C

E 3 E

F 0 F

Optimum 2-hop paths

A

E

F

C

D

B

2

3

6

4

1

1

1

3

13

Iteration #2

Table for A

Dst Cst Hop

A 0 A

B 4 B

C 6 E

D 7 B

E 2 E

F 5 E

Table for B

Dst Cst Hop

A 4 A

B 0 B

C 2 F

D 3 D

E 4 F

F 1 F

Table for C

Dst Cst Hop

A 6 F

B 2 F

C 0 C

D 1 D

E 4 F

F 1 F

Table for D

Dst Cst Hop

A 7 B

B 3 B

C 1 C

D 0 D

E 5 C

F 2 C

Table for E

Dst Cst Hop

A 2 A

B 4 F

C 4 F

D 5 F

E 0 E

F 3 F

Table for F

Dst Cst Hop

A 5 B

B 1 B

C 1 C

D 2 C

E 3 E

F 0 F

Optimum 3-hop paths

A

E

F

C

D

B

2

3

6

4

1

1

1

3

14

Distance Vector: Link Cost
Changes

Link cost changes:

• Node detects local link cost change

• Updates distance table

• If cost change in least cost path, notify

neighbors

X Z

14

50

Y
1

algorithm
terminates“good

news
travels
fast”

15

Distance Vector: Link Cost
Changes

Link cost changes:

• Good news travels fast

• Bad news travels slow -

“count to infinity” problem!
X Z

14

50

Y
60

algorithm
continues

on!

16

Distance Vector: Split Horizon

If Z routes through Y to get to X :

• Z does not advertise its route to X back to Y

algorithm
terminates

X Z

14

50

Y
60

? ? ?

17

Distance Vector: Poison Reverse

If Z routes through Y to get to X :

• Z tells Y its (Z’s) distance to X is infinite (so Y won’t

route to X via Z)

• Immediate notification of unreachability, rather than

split horizon timeout waiting for advertisement

• Will this completely solve count to infinity problem?

X Z

14

50

Y
60

algorithm
terminates

18

Poison Reverse Failures

• Iterations don’t converge

• “Count to infinity”

• Solution

• Make “infinity” smaller

• What is upper bound on

maximum path length?

Table for A

Dst Cst Hop

C 7 F

Table for B

Dst Cst Hop

C 8 A

Table for F

Dst Cst Hop

C 1 C

Table for F

Dst Cst Hop

C  –

Table for A

Dst Cst Hop

C  –

Forced

Update

Table for B

Dst Cst Hop

C 14 A

Forced

Update

F C
6

1

1

1

B
D

A

4



Table for D

Dst Cst Hop

C 9 B

Forced

Update

Table for A

Dst Cst Hop

C 13 D

Better

Route

Table for D

Dst Cst Hop

C 15 B

Table for A

Dst Cst Hop

C 19 D

Forced

Update

•

•

•

Forced

Update

19

Routing Information Protocol (RIP)

• Earliest IP routing protocol (1982 BSD)
• Current standard is version 2 (RFC 1723)

• Features
• Every link has cost 1

• “Infinity” = 16

• Limits to networks where everything reachable within
15 hops

• Sending Updates
• Every router listens for updates on UDP port 520

• RIP message can contain entries for up to 25 table
entries

20

RIP Updates

• Initial

• When router first starts, asks for copy of table for every neighbor

• Uses it to iteratively generate own table

• Periodic

• Every 30 seconds, router sends copy of its table to each neighbor

• Neighbors use it to iteratively update their tables

• Triggered

• When every entry changes, send copy of entry to neighbors

• Except for one causing update (split horizon rule)

• Neighbors use it to update their tables

21

RIP Staleness / Oscillation Control

• Small Infinity
• Count to infinity doesnt take very long

• Route Timer
• Every route has timeout limit of 180 seconds

• Reached when haven’t received update from next hop for
6 periods

• If not updated, set to infinity

• Soft-state refresh → important concept!

• Behavior
• When router or link fails, can take minutes to stabilize

22

Outline

• Intro

• Distance Vector

• Link State

23

Link State Protocol Concept

• Every node gets complete copy of graph

• Every node “floods” network with data about its

outgoing links

• Every node computes routes to every other node

• Using single-source, shortest-path algorithm

• Process performed whenever needed

• When connections die / reappear

24

Sending Link States by Flooding

• X Wants to Send

Information

• Sends on all outgoing

links

• When Node Y Receives

Information from Z

• Send on all links other

than Z

X A

C B D

(a)

X A

C B D

(b)

X A

C B D

(c)

X A

C B D

(d)

25

Dijkstra’s Algorithm

• Given

• Graph with source node s and edge costs c(u,v)

• Determine least cost path from s to every node v

• Shortest Path First Algorithm

• Traverse graph in order of least cost from source

26

Dijkstra’s Algorithm: Concept

• Node Sets
• Done

• Already have least cost path to it

• Horizon:

• Reachable in 1 hop from node in
Done

• Unseen:

• Cannot reach directly from node in
Done

• Label
• d(v) = path cost from s to v

• Path
• Keep track of last link in path

A

E

F

C

D

B

2

3

6

3

1

1

2

3
Source

Node

Done

Horizon
Unseen

0

2
5

3





Current Path Costs

27

Dijkstra’s Algorithm: Initially

• No nodes done

• Source in horizon

A

E

F

C

D

B

2

3

6

3

1

1

2

3
Source

Node

Done

Horizon

Unseen

0










Current Path Costs

28

Dijkstra’s Algorithm: Initially

• d(v) to node A shown in red

• Only consider links from done nodes

A

E

F

C

D

B

2

3

6

3

1

1

2

3
Source

Node

Done
Horizon Unseen

0

2
6

3





Current Path Costs

29

Dijkstra’s Algorithm

• Select node v in horizon with minimum d(v)

• Add link used to add node to shortest path tree

• Update d(v) information

A

E

F

C

D

B

2

3

6

3

1

1

2

3
Source

Node

Done

Horizon
Unseen

0

2

3





Current Path Costs
65

30

Dijkstra’s Algorithm

• Repeat…

A

C

2

3

6

3

1

1

2

3
Source

Node

Done

Horizon

Unseen

0

2
5

3





Current Path Costs
F

B

D

E

31

Dijkstra’s Algorithm

• Update d(v) values

• Can cause addition of new nodes to horizon

2

6

3

1

1

2

3
Source

Node

Done
Horizon

Unseen

0

2
4

3



6

Current Path Costs

A

C3

D

B

E

F

32

Dijkstra’s Algorithm

• Final tree shown in green

2

6

3

1

1

2

3
Source

Node

0

2
4

3

5

6

A

C3

D

B

E

F

33

Link State Characteristics

• With consistent

LSDBs*, all nodes

compute consistent

loop-free paths

• Can still have

transient loops

A

B

C

D

1

3

5 2

1

Packet from C→A

may loop around BDC

if B knows about failure

and C & D do not

*Link State Data Base

34

OSPF Routing Protocol

• Open

• Open standard created by IETF

• Shortest-path first

• Another name for Dijkstra’s algorithm

• More prevalent than RIP

35

OSPF Reliable Flooding

• Transmit link state advertisements

• Originating router

• Typically, minimum IP address for router

• Link ID

• ID of router at other end of link

• Metric

• Cost of link

• Link-state age

• Incremented each second

• Packet expires when reaches 3600

• Sequence number

• Incremented each time sending new link information

36

OSPF Flooding Operation

• Node X Receives LSA from Node Y

• With Sequence Number q

• Looks for entry with same origin/link ID

• Cases

• No entry present

• Add entry, propagate to all neighbors other than Y

• Entry present with sequence number p < q

• Update entry, propagate to all neighbors other than Y

• Entry present with sequence number p > q

• Send entry back to Y

• To tell Y that it has out-of-date information

• Entry present with sequence number p = q

• Ignore it

37

Flooding Issues

• When should it be performed
• Periodically

• When status of link changes

• Detected by connected node

• What happens when router goes down & back up
• Sequence number reset to 0

• Other routers may have entries with higher sequence
numbers

• Router will send out LSAs with number 0

• Will get back LSAs with last valid sequence number p

• Router sets sequence number to p+1 & resends

38

Adoption of OSPF

• RIP viewed as outmoded

• Good when networks small and routers had limited

memory & computational power

• OSPF Advantages

• Fast convergence when configuration changes

39

Comparison of LS and DV
Algorithms

Message complexity
• LS: with n nodes, E links,

O(nE) messages

• DV: exchange between
neighbors only

Speed of Convergence
• LS: Relatively fast

• Complex computation, but can
forward before computation

• may have transient loops

• DV: convergence time varies

• may have routing loops

• count-to-infinity problem

• faster with triggered
updates

Space requirements:

• LS maintains entire topology

• DV maintains only neighbor

state

Robustness: router

malfunctions

• LS: Node can advertise

incorrect link cost

• Each node computes its

own table

• DV: Node can advertise

incorrect path cost

• Each node’s table used by

others (error propagates)

40

Outline

• Distance Vector

• Link State

• Routing Hierarchy

