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Apache Hadoop

• The Hadoop infrastructure takes care of  all complex aspects of  distributed 

processing: parallelization, scheduling, resource management, inter-machine 

communication, handling software and hardware failures, and more. 

• Thanks to this clean abstraction, implementing distributed applications that 

process terabytes of  data on hundreds (or even thousands) of  machines has 

never been so easy — even for developers with no previous experience with 

distributed systems.



“Classic” Hadoop



Job Execution In “Classic” Hadoop

• In the MapReduce framework, the job execution is controlled by two types 

of  processes:

• A single master process called JobTracker, which coordinates all jobs running on the 

cluster and assigns map and reduce tasks to run on the TaskTrackers

• A number of  subordinate processes called TaskTrackers, which run assigned tasks and 

periodically report the progress to the JobTracker



The JobTracker’s Roles In “Classic Hadoop”

• Management of  computational resources in the cluster, which involves 

maintaining the list of  live nodes, the list of  available and occupied map and 

reduce slots, and allocating the available slots to appropriate jobs and tasks 

according to selected scheduling policy

• Coordination of  all tasks running on a cluster, which involves instructing 

TaskTrackers to start map and reduce tasks, monitoring the execution of  the 

tasks, restarting failed tasks, speculatively running slow tasks, calculating total 

values of  job counters, and more



Limitations of  Classic Hadoop

• The most serious limitations of  this model are primarily related to scalability, 

resource utilization, and the support of  workloads different from 

MapReduce. 



Scalability Limits of  Classic Hadoop

• The large Hadoop clusters revealed a limitation involving a scalability 

bottleneck caused by having a single JobTracker. According to Yahoo!, the 

practical limits of  such a design are reached with a cluster of  5,000 nodes 

and 40,000 tasks running concurrently. Due to this limitation, smaller and 

less-powerful clusters had to be created and maintained.



Why The Scalability Issue

• The large number of  responsibilities given to a single process caused 

significant scalability issues, especially on a larger cluster where the 

JobTracker had to constantly keep track of  thousands of  TaskTrackers, 

hundreds of  jobs, and tens of  thousands of  map and reduce tasks. The 

image below illustrates the issue. 

• On the contrary, the TaskTrackers usually run only a dozen or so tasks, which were 

assigned to them by the hard-working JobTracker.



A Picture Worth For Visual Reinforcement



Partitioning Problem

• Neither smaller nor larger Classic Hadoop clusters used their computational 
resources with optimum efficiency. 

• In Hadoop MapReduce, the computational resources on each slave node are divided 
by a cluster administrator into a fixed number of  map and reduce slots, which are 
not fungible. 

• With the number of  map and reduce slots set, a node cannot run more map tasks 
than map slots at any given moment, even if  no reduce tasks are running. 

• It harms the cluster utilization because when all map slots are taken (and we still 
want more), we cannot use any reduce slots, even if  they are available, or vice versa.



Why Only One Trick?

• Classic Hadoop was designed to run MapReduce jobs only. 

• With the advent of  alternative programming models (such as graph 

processing provided by Apache Giraph), there was an increasing need to 

support programming paradigms besides 

• MapReduce that could run on the same cluster and share resources in an 

efficient and fair manner.



Goals

• Make Hadoop scalable

• Make it more efficient

• Let the infrastructure do other things



A Simple, Powerful Idea

• To address the scalability issue, a simple but brilliant idea was proposed: 

• Let's somehow reduce the responsibilities of  the single JobTracker and delegate some 

of  them to the TaskTrackers since there are many of  them in a cluster. 

• This concept was reflected in a new design by separating dual responsibilities 

of  the JobTracker (cluster resource management and task coordination) into 

two distinct types of  processes.



Distributing the JobTracker

• Instead of  having a single JobTracker, a new approach introduces a cluster manager with the 
sole responsibility of  tracking live nodes and available resources in the cluster and assigning 
them to the tasks. 

• For each job submitted to a cluster, a dedicated and short-living JobTracker is started to 
control the execution of  tasks within that job only. 

• Interestingly, the short-living JobTrackers are started by the TaskTrackers running on slave nodes. 

• Thus, the coordination of  a job's life cycle is spread across all of  the available machines in the cluster. 

• Thanks to this behavior, more jobs can run in parallel and scalability is dramatically increased.



New, YARN Terminology

• The following name changes give a bit of  insight into the design of  YARN:

• ResourceManager instead of  a cluster manager

• ApplicationMaster instead of  a dedicated and short-lived JobTracker

• NodeManager instead of  TaskTracker

• A distributed application instead of  a MapReduce job

• What do these new names suggest about how we view the system?



YARN Architecture



The ResourceManager

• A global ResourceManager runs as a master daemon, usually on a dedicated machine, 
that arbitrates the available cluster resources among various competing applications. 

• The ResourceManager tracks how many live nodes and resources are available on the 
cluster and coordinates what applications submitted by users should get these 
resources and when. 

• The ResourceManager is the single process that has this information so it can make its 
allocation (or rather, scheduling) decisions in a shared, secure, and multi-tenant 
manner (for instance, according to an application priority, a queue capacity, ACLs, 
data locality, etc.).



The ResourceManager

• Although the ResourceManager does not perform any monitoring of  the tasks 

within an application, it checks the health of  the ApplicationMasters. 

• If  the ApplicationMaster fails, it can be restarted by the ResourceManager in a new 

container. 



The ApplicationMaster

• When a user submits an application, an instance of  a lightweight process 

called the ApplicationMaster is started to coordinate the execution of  all tasks 

within the application. 

• This includes monitoring tasks, restarting failed tasks, speculatively running slow tasks, 

and calculating total values of  application counters. 

• These responsibilities were previously assigned to the single JobTracker for all jobs. 

• The ApplicationMaster and tasks that belong to its application run in resource 

containers controlled by the NodeManagers.



The ApplicationMaster

• The ApplicationMaster spends its whole life negotiating containers to launch 

all of  the tasks needed to complete its application. 

• It also monitors the progress of  an application and its tasks, restarts failed 

tasks in newly requested containers, and reports progress back to the client 

that submitted the application. 

• After the application is complete, the ApplicationMaster shuts itself  down and 

releases its own container.



Responsibilities In One Sentence

• One can say that the ResourceManager takes care of  the ApplicationMasters, 

while the ApplicationMasters takes care of  tasks.



The NodeManager

• The NodeManager is a more generic and efficient version of  the TaskTracker.

• Instead of  having a fixed number of  map and reduce slots, the NodeManager

has a number of  dynamically created resource containers. 

• The size of  a container depends upon the amount of  resources it contains, such as 

memory, CPU, disk, and network IO.

• The number of  containers on a node is a product of  configuration parameters and the 

total amount of  node resources (such as total CPUs and total memory) outside the 

resources dedicated to the slave daemons and the OS.



Newfound Flexibility

• The ResourceManager, the NodeManager, and a container are not concerned 
about the type of  application or task. All application framework-specific 
code is simply moved to its ApplicationMaster so that any distributed 
framework can be supported by YARN — as long as someone implements 
an appropriate ApplicationMaster for it.

• Thanks to this generic approach, the dream of  a Hadoop YARN cluster 
running many various workloads comes true. Imagine: a single Hadoop 
cluster in your data center that can run MapReduce, Giraph, Storm, Spark, 
Tez/Impala, MPI, and more.



Newfound Flexibility

• The ApplicationMaster can run any type of  task inside a container. 

• For example, the MapReduce ApplicationMaster requests a container to launch a map or a 

reduce task, 

• The Giraph ApplicationMaster requests a container to run a Giraph task. 

• You can also implement a custom ApplicationMaster that runs specific tasks and, in this 

way, invent a shiny new distributed application framework that changes the big data 

world. 



What About MapReduce? 

• In YARN, MapReduce is simply a distributed application (but still a very 

popular and useful one)

• …introducing….MRv2. 

• MRv2 is simply the re-implementation of  the classical MapReduce engine, 

now called MRv1, that runs on top of  YARN.



Additional Benefits?

• The single-cluster approach obviously provides a number of  advantages, including:

• Higher cluster utilization, whereby resources not used by one framework could be consumed 
by another

• Lower operational costs, because only one "do-it-all" cluster needs to be managed and tuned

• Reduced data motion, as there's no need to move data between Hadoop YARN and systems 
running on different clusters of  machines

• Managing a single cluster also results in a greener solution to data processing. Less data 
center space is used, less silicon wasted, less power used, and less carbon emitted simply 
because we run the same calculation on a smaller but more efficient Hadoop cluster



Additional Improvement: Uberization

• Uberization is the possibility to run all tasks of  a MapReduce job in the 

ApplicationMaster's JVM if  the job is small enough. This way, you avoid the 

overhead of  requesting containers from the ResourceManager and asking the 

NodeManagers to start (supposedly small) tasks.



Additional Improvement: Better Recovery 

• An application recovery after the restart of  ResourceManager (YARN-128). 

• The ResourceManager stores information about running applications and 

completed tasks in HDFS. 

• If  the ResourceManager is restarted, it recreates the state of  applications and 

re-runs only incomplete tasks. 



Application Submission



Submitting an Application

• Suppose that users submit applications to the ResourceManager by typing the hadoop jar 
command in the same manner as in MRv1. 

• The ResourceManager maintains the list of  applications running on the cluster and the list of  available 
resources on each live NodeManager. 

• The ResourceManager needs to determine which application should get a portion of  cluster resources 
next. 

• The decision is subjected to many constraints, such as queue capacity, ACLs, and fairness. The 
ResourceManager uses a pluggable Scheduler. 

• The Scheduler focuses only on scheduling; it manages who gets cluster resources (in the form of  
containers) and when, but it does not perform any monitoring of  the tasks within an application so it 
does not attempt to restart failed tasks



Accepting a New Application Submission

• When the ResourceManager accepts a new application submission, one of  the 

first decisions the Scheduler makes is selecting a container in which 

ApplicationMaster will run. 

• After the ApplicationMaster is started, it will be responsible for a whole life 

cycle of  this application. 

• First and foremost, it will be sending resource requests to the ResourceManager

to ask for containers needed to run an application's tasks.



Resource Request

• A resource request is simply a request for a number of  containers that 

satisfies some resource requirements, such as:

• An amount of  resources, today expressed as megabytes of  memory and CPU shares

• A preferred location, specified by hostname, rackname, or * to indicate no preference

• A priority within this application, and not across multiple applications



Granting a Container

• If  and when it is possible, the ResourceManager grants a container (expressed as container ID 

and hostname) that satisfies the requirements requested by the ApplicationMaster in the 

resource request. 

• A container allows an application to use a given amount of  resources on a specific host. 

• After a container is granted, the ApplicationMaster will ask the NodeManager (that manages 

the host on which the container was allocated) to use these resources to launch an 

application-specific task. 

• This task can be any process written in any framework (such as a MapReduce task or a Giraph task). 

• The NodeManager does not monitor tasks; it only monitors the resource usage in the containers and, 

for example, it kills a container if  it consumes more memory than initially allocated.



Summary

• YARN offers clear advantages in scalability, efficiency, and flexibility 

compared to the classical MapReduce engine in the first version of  Hadoop. 

• Both small and large Hadoop clusters greatly benefit from YARN. 

• To the end user (a developer, not an administrator), the changes between 

MRv1 and MRv2 are almost invisible because it's possible to run unmodified 

MapReduce jobs using the same MapReduce API and CLI.


