14-7306:
Distributed Systems

Lecture 20* Spring 2018 * Kesden

Today’s lecture is based upon:
Kawa, Adam, “Introduction to Yarn”, IBM, August 12, 2014.

https://www.ibm.com/developerworks/library/bd-yarn-intro/

Apache Hadoop

* The Hadoop infrastructure takes care of all complex aspects of distributed

- processing: parallelization, scheduling, resource management, inter-machine

communication, handling software and hardware failures, and more.

* Thanks to this clean abstraction, implementing distributed applications that
process terabytes of data on hundreds (or even thousands) of machines has
never been so easy — even for developers with no previous experience with
distributed systems.

“Classic” Hadoop

v TaskTracker
=3
Map task | Reduce task
“--s o
ﬂ Tracker TaskTracker
I
f“ | Reduce task I
A
TaskTracker
- Schedules job submitted by clients
- Keeps track of live TaskTrackers and [Map task] | Map task |
available map and reduce slots

- Monitors jobs and tasks execuftion
an the cluster

T
."'\-
=
1'I.
-\'1.

- Runs map and
reduce tasks

- Heports to the
JobTracker

Job Execution In “Classic”” Hadoop

* In the MapReduce framework, the job execution is controlled by two types

of processes:
. * A single master process called JobTracker, which coordinates all jobs running on the

cluster and assigns map and reduce tasks to run on the TaskTrackers

* A number of subordinate processes called TaskTrackers, which run assigned tasks and
periodically report the progress to the JobTracker

The JobTracker’s Roles In “Classic Hadoop”

* Management of computational resources in the cluster, which involves

maintaining the list of live nodes, the list of available and occupied map and
. reduce slots, and allocating the available slots to appropriate jobs and tasks
according to selected scheduling policy

* Coordination of all tasks running on a cluster, which involves instructing
TaskTrackers to start map and reduce tasks, monitoring the execution of the
tasks, restarting failed tasks, speculatively running slow tasks, calculating total
values of job counters, and more

Limitations ot Classic Hadoop

* The most serious limitations of this model are primarily related to scalability,
resource utilization, and the support of workloads different from
. MapReduce.

Scalability Limits of Classic Hadoop

* The large Hadoop clusters revealed a limitation involving a scalability

bottleneck caused by having a single JobTracker. According to Yahoo!, the
- practical limits of such a design are reached with a cluster of 5,000 nodes
and 40,000 tasks running concurrently. Due to this limitation, smaller and
less-powertul clusters had to be created and maintained.

Why The Scalability Issue

* The large number of responsibilities given to a single process caused

JobTracker had to constantly keep track of thousands of TaskTrackers,

- significant scalability issues, especially on a larger cluster where the
hundreds of jobs, and tens of thousands of map and reduce tasks. The

image below illustrates the issue.

* On the contrary, the TaskTrackers usually run only a dozen or so tasks, which were
assigned to them by the hard-working JobTracker.

A Picture Worth For Visual Reinforcement

- thousands of TaskTrackers,

- hundreds of jobs,
- tens and thousands of map

Keeps track aof
and reducs tasks.

JobTracker

19| [20]

[2

Runs dozen or so map
and reduce tasks

] e bl) e e e e e e i) b

] e b) e e e e e e i]

4000 TaskTrackers

Partitioning Problem

Neither smaller nor larger Classic Hadoop clusters used their computational
resources with optimum etficiency.

In Hadoop MapReduce, the computational resources on each slave node are divided
by a cluster administrator into a fixed number of map and reduce slots, which are
not fungible.

With the number of map and reduce slots set, a node cannot run more map tasks
than map slots at any given moment, even 1f no reduce tasks are running.

It harms the cluster utilization because when all map slots are taken (and we still
want more), we cannot use any reduce slots, even if they are available, or vice versa.

Why Only One Trick?

* Classic Hadoop was designed to run MapReduce jobs only.

. * With the advent of alternative programming models (such as graph
processing provided by Apache Giraph), there was an increasing need to

support programming paradigms besides

* MapReduce that could run on the same cluster and share resources in an
efficient and fair manner.

* Make Hadoop scalable

* Make it more efficient

* Let the infrastructure do other things

A Simple, Powerful Idea

* To address the scalability issue, a simple but brilliant idea was proposed:

. * Let's somehow reduce the responsibilities of the single JobTracker and delegate some

of them to the TaskTrackers since there are many of them in a cluster.

* This concept was reflected in a new design by separating dual responsibilities
of the JobTracker (cluster resource management and task coordination) into
two distinct types of processes.

Distributing the JobTracker

* Instead of having a single JobTracker, a new approach introduces a cluster manager with the
sole responsibility of tracking live nodes and available resources in the cluster and assigning

. them to the tasks.
* Tor each job submitted to a cluster, a dedicated and short-living JobTracker is started to

control the execution of tasks within that job only.
* Interestingly, the short-living JobTrackers are started by the TaskTrackers running on slave nodes.
* Thus, the coordination of a job's life cycle is spread across all of the available machines in the cluster.

* Thanks to this behavior, more jobs can run in parallel and scalability is dramatically increased.

New, YARN Terminology ‘

* The following name changes give a bit of insight into the design of YARN:
. * ResourceManager instead of a cluster manager
| * ApplicationMaster instead of a dedicated and short-lived JobTracker

* NodeManager instead of TaskTracker

* A distributed application instead of a MapReduce job

* What do these new names suggest about how we view the system?

YARN Architecture

ResourceManager (RM) MNodeM (MM
eManager

slifee bl e dellohs - Provides computational resources

and available resources ; 2
- Allocates available resources to NodeManager : 'ﬁ;ﬁgﬂ ;f;ugtgg;:;sﬁ SRS

appropriate applications and tasks 4 'F-...___‘__‘HH_ mntan?‘uers P 9
- Monitors application masters k

I'u'IR app G|raEh | Map |
tazk
MR N ApplicationMaster (AM)
client S5 -4 Resource NodeManager - Coordinates the execution of all
i manager tasks within its application
m - Asks for appropriate resource
. [Map J Giraph app containers to run tasks
task master
client
Containers
. A NodeManager ;
Client - Can run different types of
. tasks (also Application
- Gan submit any type wﬂum Masters)
of application - Has different sizes e.g. RAM,
supported by YARN CFU

The ResourceManager

* A global ResourceManager runs as a master daemon, usually on a dedicated machine,
that arbitrates the available cluster resources among various competing applications.

. * 'The ResourceManager tracks how many live nodes and resources are available on the
cluster and coordinates what applications submitted by users should get these
resources and when.

* The ResourceManageris the single process that has this information so it can make its
allocation (or rather, scheduling) decisions in a shared, secure, and multi-tenant

manner (for instance, according to an application priority, a queue capacity, ACLs,
data locality, etc.).

The ResourceManager

* Although the ResourceManager does not perform any monitoring of the tasks

. within an application, it checks the health of the ApplicationMasters.

* If the ApplicationMaster fails, it can be restarted by the ResowrceManager in a new
containet.

The ApplicationMaster

* When a user submits an application, an instance of a lightweight process

called the ApplicationMaster is started to coordinate the execution of all tasks
- within the application.

* 'This includes monitoring tasks, restarting failed tasks, speculatively running slow tasks,
and calculating total values of application counters.

* These responsibilities were previously assigned to the single JobTracker tor all jobs.

* The ApplicationMaster and tasks that belong to its application run in resource
containers controlled by the NodeManagers.

The ApplicationMaster

* The ApplicationMaster spends its whole life negotiating containers to launch
- all of the tasks needed to complete its application.

* It also monitors the progress of an application and its tasks, restarts failed
tasks in newly requested containers, and reports progress back to the client
that submitted the application.

* After the application is complete, the ApplicationMaster shuts itselt down and
releases its own containet.

Responsibilities In One Sentence

* One can say that the ResourceManager takes care ot the ApplicationMasters,
while the ApplicationMasters takes care of tasks.

The NodeManager !

* The NodeManager is a more generic and etficient version of the TaskTracker.

. * Instead of having a fixed number of map and reduce slots, the NodeManager

has a number of dynamically created resource containers.

* 'The size of a container depends upon the amount of resources it contains, such as
memory, CPU, disk, and network IO.

* The number of containers on a node is a product of configuration parameters and the
total amount of node resources (such as total CPUs and total memory) outside the
resources dedicated to the slave daemons and the OS.

Newtound Flexibility

* The ResourceManager, the NodeManager, and a container are not concerned

. about the type of application or task. All application framework-specific

code 1s simply moved to its ApplicationMaster so that any distributed
framework can be supported by YARN — as long as someone implements
an appropriate ApplicationMaster tor it.

* Thanks to this generic approach, the dream of a Hadoop YARN cluster
running many various workloads comes true. Imagine: a single Hadoop

cluster in your data center that can run MapReduce, Giraph, Storm, Spark,
Tez/ Impala, MPI, and more.

Newtound Flexibility

* The ApplicationMaster can run any type of task inside a container.

For example, the MapReduce ApplicationMaster requests a container to launch a map or a

reduce task,
The Giraph ApplicationMaster requests a container to run a Giraph task.

You can also implement a custom ApplicationMaster that runs specific tasks and, in this
way, invent a shiny new distributed application framework that changes the big data

world.

What About MapReduce?

* In YARN, MapReduce is simply a distributed application (but still a very
popular and useful one)
. * ...introducing....MRv2.
* MRv2 1s simply the re-implementation of the classical MapReduce engine,
now called MRv1, that runs on top of YARN.

Additional Benefits?

* The single-cluster approach obviously provides a number of advantages, including:

Higher cluster utilization, whereby resources not used by one framework could be consumed
by another

Lower operational costs, because only one "do-it-all" cluster needs to be managed and tuned

Reduced data motion, as there's no need to move data between Hadoop YARN and systems
running on different clusters of machines

Managing a single cluster also results in a greener solution to data processing. Less data
center space is used, less silicon wasted, less power used, and less carbon emitted simply
because we run the same calculation on a smaller but more efficient Hadoop cluster

Additional Improvement: Uberization

* Uberization 1s the possibility to run all tasks of a MapReduce job in the
. ApplicationMaster's JVM if the job is small enough. This way, you avoid the

overhead of requesting containers from the ResourceManager and asking the
NodeManagers to start (supposedly small) tasks.

Additional Improvement: Better Recovery

* An application recovery after the restart of ResourceManager (YARN-128).

The ResourceManager stores information about running applications and
completed tasks in HDFS.

* If the ResourceManager is restarted, it recreates the state of applications and
re-runs only incomplete tasks.

Application Submission

1. Run Resource requests
| Client I application .| Resource i Priority Location Rescurces #Containers |
manager :____1 _____ hostl 1GB+1eore 2 N
' Pricrity Location Resources #Containers |

. 2 rack? 2GB + 1 core 1]

2. Start AM

3. Negotiate

e el Task | Container I

="

Container| A

(8](¢]

Task | Container I

Node manager

Node manager [host1, rack1]

[host M, rack N]

4. Launch
tasks in the
containers

Task | Container

Node manager
[nostA, rackZ)

Submitting an Application

* Suppose that users submit applications to the ResourceManager by typing the hadoop jar
command in the same manner as in MRv1.

- * The ResourceManager maintains the list of applications running on the cluster and the list of available

resources on each live NodeManager.

* The ResourceManager needs to determine which application should get a portion of cluster resources
next.

* The decision is subjected to many constraints, such as queue capacity, ACLs, and fairness. The
ResourceManager uses a pluggable Scheduler.

® The Scheduler focuses only on scheduling; it manages who gets cluster resources (in the form of
containers) and when, but it does not perform any monitoring of the tasks within an application so it
does not attempt to restart failed tasks

Accepting a New Application Submission

* When the ResourceManager accepts a new application submission, one of the

first decisions the Scheduler makes is selecting a container in which
. ApplicationMaster will run.

* After the ApplicationMaster 1s started, it will be responsible for a whole life
cycle of this application.

* TFirst and foremost, it will be sending resource requests to the ResourceManager
to ask for containers needed to run an application's tasks.

Resource Request

* A resource request 1s simply a request for a number of containers that

. satisfies some resource requirements, such as:

* An amount of resources, today expressed as megabytes of memory and CPU shares
* A preferred location, specified by hostname, rackname, or * to indicate no preference

* A priority within this application, and not across multiple applications

Granting a Containet

* If and when it 1s possible, the ResourceManager grants a container (expressed as container ID
and hostname) that satistfies the requirements requested by the ApplicationMaster in the

. resource request.

* A container allows an application to use a given amount of resources on a specific host.

* After a container is granted, the ApplicationMaster will ask the NodeManager (that manages
the host on which the container was allocated) to use these resources to launch an
application-specific task.

* This task can be any process written in any framework (such as a MapReduce task or a Giraph task).

* The NodeManager does not monitor tasks; it only monitors the resource usage in the containers and,

for example, it kills a container if it consumes more memory than initially allocated.

Summary

* YARN offers clear advantages in scalability, efficiency, and flexibility
. compared to the classical MapReduce engine in the first version of Hadoop.

* Both small and large Hadoop clusters greatly benefit from YARN.

* 'To the end user (a developer, not an administrator), the changes between
MRv1 and MRv2 are almost invisible because it's possible to run unmodified
MapReduce jobs using the same MapReduce API and CLL.

