| 4-736:
DISTRIBUTED SYSTEMS

LECTURE 16 * SPRING 2018 * KESDEN

ACID

Atomicity

Consistency (serializability)

Isolation

Durability

ACID

* Acid - "All or nothing*

* Consistency -- This implies two types of consistency. It implies that a single system is
consistent and that there is consistency across systems. In other words, if $100 is moved from
one bank account to another, not only is it subtracted from one and added to another on one

host -- it appears this way everywhere. It is this property that allows one transaction to safely
follow another.

* Isolation - Regardless of the level of concurrency, transactions must yields the same results as
if they were executed one at a time (but any one of perhaps several orderings).

* Durability - permanence. Changes persist over crashes, &c.

TRANSACTION

* Transactions are sequences of actions such that all of the operations within the
transaction succeed (on all recipients) and their effects are permanantly visible, or none

of none of the operations suceed anywhere and they have no visible effects; this might

be because of failure (unintentional) or an abort (intentional).

COMMIT POINT

* Characterisitically, transactions have a commit point.

* This is the point of no return. Before this point, we can undo a transaction. After this

point, all changes are permanant. If problems occur after the commit point, we can take

compensating or corrective action, but we can't wave a magic wand and undo it.

TRANSACTION EXAMPLE

Plan:

1. Transfer $100 from savings to checking

2. Transfer $300 from money market to checking
3. Dispense $350

savings -= 100
checking +=100
moneymkt -= 300
checking += 300

. verify: checking > 350
checking -= 350
{Commit Point} Why Here!?
Dispense $350

©ONOUAWNE

ATOMIC COMMIT PROTOCOL

* A set of rules that, if followed, will ensure that the transaction commits everywhere or

aborts everywhere.

* Most common is “Two-Phase Commit (2PC)”

TWO PHASE COMMIT (2PC)

Coordinator Participant

*Wait for request
*Upon request, if ready:
*Precommit (write to log and.or atomic storage) * Precommit
*Send request to all participants * Send coordinator YES
*Upon request, if not ready:
* Send coordinator NO

Coordinator blocks waiting for ALL replies
(A time out is possible -- that would mandate an ABORT)

------ Phase 2 mmm e e e oo
This is the point of no return! Wait for "the word" from the coordinator
*If all participants voted YES then send commit to each participant If COMMIT, then COMMIT (transaction becomes visible)
*Otherwise send ABORT to each participant *If ABORT, then ABORT (gone for good)

TWO PHASE COMMIT (

2PC)

2PC - Coordinator

{E)xecute
- precommit

precommit done

{U)ncertain

- send request to each
participant

- wait for each participant

to reply (timeout is possible

{A)bort
- send abort to each
participant

timeout, or
one or more NO votes

zot all YES votes

4

(C)ommit
- send COMMIT to each
participant

2PC - Participant

(E)xecute
- upon
request

Not ready /" (A)bort

\ - send abort to each
patticipant

{U)ncertain
- precommit
- send YES to coordinator
- wait for decision

COMMIT decision

{C)ommit
- make transaction visible

THREE PHASE COMMIT (3PC)

3PC - Coordinator

3P0 Petiipant Another real-world atomic commit
protocol is three-phase commit
(3PC). This protocol can reduce
the amount of blocking and
provide for more flexible recovery
in the event of failure. Although it
2 IS a better choice in unusually
failure-prone environments, its
@ complexity makes 2PC a common,
if not more common, choice.

- send request to each
participant

- wait for each participant

to reply (timeout is possible

{A)bort
- send abort to each
participant

- wait for coordinator
(up to timeout value]

got PRECOMMIT

got all YES votes

(C)ommitabl({e) (Ce)

(C)ommitabl{e) (Ce)
- ACK coordinator
- send PRECOMMIT to

each participant
- wait up to timeout for
COMMIT

- send COMMIT to
each participant

(

THREE PHASE COMMIT (3PC)

If the participant finds itself in the (R)ecovery state, it assumes that the coordinator did not respond, because it failed. Although this isn't a
good thing, it may not prove to be fatal.

If a majority of the participants are in the uncertain and/or commitable states, it may be possible to elect a new coordinator and continue.
If any participant has aborted, it sends ABORTSs to all (This action is mandatory -- remember "all or none").
If any participant has committed, it sends COMMIT to all. (This action is mandatory -- remember "all or none").

If at least one participant is in the commitable state and a majority of the participants are commitable or uncertain, send PRECOMMIT to
each participant and proceed with "the standard plan" to commit.

If there are no committable participants, but more than half are uncertain, send a PREABORT to all participants.Then follow this up with
a full-fledged ABORT when more than half of the processes are in the abortable state. PRECOMMIT and abortable are not shown above,
but they are complimentary to COMMIT and commitable.This action is necessary, because an abort is the only safe action -- some
process may have aborted.

If none of the above are true, block until more responses are available.

CONCURRENCY AND TRANSACTIONS

It is desirable to have transactions execute concurrently

* But they need to execute as if in isolation

Transactions play with many resources

We must use concurrency control to protect critical resources

* W/ithout causing deadlock

In practice, the key to avoiding deadlock is to avoid “circular wait”

Want to allow maximum concurrency while ensuring ACID properties

TWO PHASE LOCKING (2PL)

* In a databases class, you'll study many techniques for managing concurrency, many are
optimistic.
* Here we are only going to talk about the most basic, Two Phase Locking (2PL)
* |t is easy to understand and safe, but may not allow as much concurrency as more advanced
techniques.
* Protocol:

* All resources have a precedence and must be acquire din increasing order

* Growth phase: acquires resources

 Shrinking phase: releases resources

TWO PHASE LOCKING

* Enforcing precedence prevents circular wait

* No cycles are possible

* Two phase system ensures serializability

* Equivalent serial schedule

SERIALIZABILITY

* Equivalent Serial Schedule Exists

* “Safe Interleaved Schedule”

SERIALIZABILITY GRAPH

Consider ditectory opetations:

Lookup (f) -Rex entry ffiom the directory (get stat information)
Enter (f) - Addentry f to the divectory
Delete (f) - Delete entry f flom the divectory

Having the conflict matvix: And the 4 transzctions below:

Lookup Enter Delete T.: L)L), D &,E, (5
Lookup [< > i TENG !
Enter > > > Ty Ly, Ly(,L, (2)
Delete > > >< T3: D3 (¥ D3 (¥

T4: '54(1), L4 (x),D4 (x)

Which, if any, of the schedules below ave serializable?

Hy: Llfx), L’l fl),f-,lf}'), L,zfz), T-1 () Dl (x) 54 (1),La(1),]3_s ()’),% (¥) B (¥}

D
4
i Ly, L 0, L (), L), [() B () B, (0, L, (4 B 0. D, (1), Dy (5} B ()

SERIALIZABILITY GRAPH

Which, if any, of the schedules below ave serializable?

Hi: L, T 0.4 (0, L () L (1 D () B, (), L, A D (0.3, (), § (v}
Hy: L0, T, 00,5,), L), [() O () B, (0, L, Y B 0, O, (3, By (v}

To answer, complete the Serialization Graphs below and check for cycles.

H{Ty i;: \L’/ :71“3} cycle: Not serializable

No cycles (acyclic): Serializable

“DON’T LET THE PERFECT BECOME THE ENEMY OF
THE GOOD”

* ACID isn’t always necessary
* Consider shopping on an eCommerce site.

* When does the inventory count need to be perfect?
* Browsing
 Putting into cart

* Check out

* Charging card

BASE

* Basically Available means that small failures don't generate large disabilities. It is the same idea as what we call
"soft failure" vs "hard failure", but with the added emphasis that a few failures in a large scale system shouldn't

really be noticeable.

* Soft state is usually intended to convey state that can be generated or refreshed upon demand, rather than
necessarily being stored as "hard state". But, in this case, it is being used to convey that values, even after

written, will continue to change without any explicit user request. Specifically, they'll propagate out slowly.

* Eventual consistency conveys the idea that, although the system might be inconsistent for some time after an

update, it will eventually converge to consistency. Without this property, or an approximation thereof, what

good would the system be?

CAP/BREWER CONJECTURE

It is commonly desirable for distributed systems to exhbit Consistency, Availability, and Partition tolerance.

By consistency we mean that all participating systems share the same view of the data.

* For example, if one system observes the value five, all systems would, if they looked, observe the value five at that
time. None, for example, would be more stale or more fresh than others.

By Availability we mean that the system is able to respond quickly enough for the user's needs.

* For example, if a Web page times out, or users abort before seeing the results, it is not available.

By Partition tolerance we mean that, in the event of the failure or isolation of some participants, the other
participants can continue to do whatever they can.

* For example, the loss of certain nodes might necessitate disconnecting certain clients or the inability to return
certain results -- but should not unduely interfere with the ability of the functioning nodes to service clients and/or

return results.

CAP/BREWER CONJECTURE

=

Long queue on one host

==

Shorter

queues

distributed

among
more hosts

==

Adding
communications
enables
synchronization
and resulting
consistency

==

—

==

