
14-736:
DISTRIBUTED SYSTEMS
LECTURE 12 * SPRING 2018 * KESDEN



WHAT ARE DISTRIBUTED FILE SYSTEMS?

• Maybe we’d better start with what are file systems?

• Maybe we’d better start with what are files?

• A file is a unit of data organized by the user. The data within a file isn't necessarily meaningful 

to the operating system. Instead, a file is created by the user and meaningful to the user. It is 

the job of the file system to maintain this unit, without understanding or caring why.

• Contrast this with a record in a database, which is described by a schema and upon which the 

database enforces constraints



WHAT ARE DISTRIBUTED FILE SYSTEMS?

• Okay. We got files. 

• So, what are file systems?

• A file system is a service responsible for managing files. File systems typically implement 

persistent storage, although volatile file systems are also possible (/proc is such an 

example). 



WHAT DOES IT MEAN TO “MANAGE FILES”?

• Name files in meaningful ways. The file system should allow a user to locate a file using a 

human-friendly name. In many cases, this is done using a hierarchical naming scheme like those 

we know and love in Windows, UNIX, Linux, &c.

• Access files. Create, destroy, read, write, append, truncate, keep track of position within, &c

• Physical allocation. Decide where to store things. Reduce fragmentation. Keep related things 

close together, &c.

• Security and protection. Ensure privacy, prevent accidental (or malicious) damage, &c.

• Resource administration. Enforce quotas, implement priorities, &c.



WHAT ARE DISTRIBUTED FILE SYSTEMS?

• Got files.

• Got file systems.

• Well, it is a type of file system, which means that it is a file system.

• The distinction isn't what it is or what it does but the environment in which it does it. 

• A traditional file system typically has all of the users and all of the storage resident on the 

same machine. A distributed file system typically operates in an environment where the data 

may be spread out across many, many hosts on a network -- and the users of the system may 

be equally distributed.



GOAL OF A GENERAL PURPOSE 
DISTRIBUTED FILE SYSTEM (DFS)

• A general purpose distributed file system should appear to the user as if a local file 

system

• Users shouldn’t have to worry about details such as

• Where files are located

• How to identify the locations

• How many replicas there are

• If the replicas are up to date

• What happens if part of the system fails, e.g. partitioning, host failure, etc.



WHY MIGHT WE WANT A GENERAL PURPOSE 
DISTRIBUTED FILE SYSTEM?

• More storage

• More throughput

• More robustness from host and storage failure

• More robust from environmental hazards

• Faster access, e.g. closer to users

• Etc.



RECALL, FOR 
EXAMPLE, UNIX-
STYLE FILE 
SYSTEMS



UNIX-LIKE FILE SYSTEMS, CONTINUED

• “Virtual File System (VFS)”

• File system, inode are base classes

• Known as “Virtual file system (VFS)” and vnode

• Specific implementation is derived type

• Implementation may be legit OO, e.g. C++

• Or, implementation may, for example, ugly C with unions, etc. 

• Implementation abstracted from interface

• Distributed File Systems can be just an alternative implementation for storage



GENERAL PURPOSE DISTRIBUTED FILE SYSTEM

• Maintain same naming system

• “Mount” in UNIX

• “Map” in Windows, etc

• Just change storage layer to use network and manage errors



NETWORK FILE SYSTEM (NFS)
“EARLY VERSIONS”

• Not a DFS

• Simply central storage accessed via network

• Client made requests on per-block basis

• “Stateless server”

• No client caching

• Turned out to be too painful

• Clients cached anyway

• Just accepted staleness for a while since no way to validate

• Evolved over time into DFS with support for caching



ANDREW FILE SYSTEM (AFS)
“OUR FRIEND”

• Stateful server

• Callback mechanism

• Invalidates client caches upon change, but in use copies unaffected

• Whole-file semantics

• Modified to move blocks in version 2.x (when it left CMU and went to IBM)



CODA

• Extension of AFS Project

• Added replication

• Added weakly connected mode: One server replicates on behalf of client

• Added disconnected mode: Uploaded and resolved by client later

• Hoard demon: Pull whole files needed for later

• Spy: Figure out which files to hoard. 

• Client-side resolution

• “Insert CVV discussion again here”


