| 4-736:
DISTRIBUTED SYSTEMS

LECTURE 12 * SPRING 2018 * KESDEN




WHAT ARE DISTRIBUTED FILE SYSTEMS!?

* Maybe we'd better start with what are file systems?

* Maybe we'd better start with what are files?

* A file is a unit of data organized by the user.The data within a file isn't necessarily meaningful
to the operating system. Instead, a file is created by the user and meaningful to the user. It is

the job of the file system to maintain this unit, without understanding or caring why.

* Contrast this with a record in a database, which is described by a schema and upon which the

database enforces constraints




WHAT ARE DISTRIBUTED FILE SYSTEMS!?

* Okay.We got files.
* So, what are file systems!?

* A file system is a service responsible for managing files. File systems typically implement

persistent storage, although volatile file systems are also possible (/proc is such an

example).




WHAT DOES IT MEAN TO “MANAGE FILES™?

* Name files in meaningful ways.The file system should allow a user to locate a file using a
human-friendly name. In many cases, this is done using a hierarchical naming scheme like those
we know and love in Windows, UNIX, Linux, &c.

* Access files. Create, destroy, read, write, append, truncate, keep track of position within, &c

* Physical allocation. Decide where to store things. Reduce fragmentation. Keep related things
close together, &c.

* Security and protection. Ensure privacy, prevent accidental (or malicious) damage, &c.

* Resource administration. Enforce quotas, implement priorities, &c.




WHAT ARE DISTRIBUTED FILE SYSTEMS!?

Got files.

Got file systems.

Well, it is a type of file system, which means that it is a file system.
The distinction isn't what it is or what it does but the environment in which it does it.

A traditional file system typically has all of the users and all of the storage resident on the
same machine. A distributed file system typically operates in an environment where the data

may be spread out across many, many hosts on a network -- and the users of the system may

be equally distributed.




GOAL OF A GENERAL PURPOSE
DISTRIBUTED FILE SYSTEM (DFS)

* A general purpose distributed file system should appear to the user as if a local file
system

* Users shouldn’t have to worry about details such as

* Where files are located

How to identify the locations

* How many replicas there are

If the replicas are up to date

What happens if part of the system fails, e.g. partitioning, host failure, etc.




WHY MIGHT WEWANT A GENERAL PURPOSE
DISTRIBUTED FILE SYSTEM?

* More storage

* More throughput

* More robustness from host and storage failure
* More robust from environmental hazards

* Faster access, e.g. closer to users

* Etc.




RECALL, FOR
EXAMPLE, UNIX-
STYLE FILE
SYSTEMS

|
3 \
— % =
6l —— ]
/ - {
/ Systerm—wide {Global)
3 Open File Table
57 By
R~ \‘
Per Process .
File Descriptor Table Per File
inode

Per file session
File Descriptor

e.g. the integer returned by open()




UNIX-LIKE FILE SYSTEMS, CONTINUED

“Virtual File System (VFS)”

File system, inode are base classes
* Known as “Virtual file system (VFS)” and vnode
 Specific implementation is derived type
* Implementation may be legit OO, e.g. C++

* Or, implementation may, for example, ugly C with unions, etc.

Implementation abstracted from interface

Distributed File Systems can be just an alternative implementation for storage




GENERAL PURPOSE DISTRIBUTED FILE SYSTEM

¢ Maintain same naming system
* “Mount” in UNIX

* “Map” in Windows, etc

* Just change storage layer to use network and manage errors




NETWORK FILE SYSTEM (NFS)
“EARLY VERSIONS”

* Nota DFS

* Simply central storage accessed via network
* Client made requests on per-block basis

* “Stateless server”

* No client caching
* Turned out to be too painful
* Clients cached anyway

* Just accepted staleness for a while since no way to validate

* Evolved over time into DFS with support for caching




ANDREW FILE SYSTEM (AFS)
“OUR FRIEND”

e Stateful server
e Callback mechanism

* Invalidates client caches upon change, but in use copies unaffected

* Whole-file semantics

* Modified to move blocks in version 2.x (when it left CMU and went to IBM)




CODA

* Extension of AFS Project

* Added replication

* Added weakly connected mode: One server replicates on behalf of client
* Added disconnected mode: Uploaded and resolved by client later

* Hoard demon: Pull whole files needed for later

* Spy: Figure out which files to hoard.

* Client-side resolution

* “Insert CVV discussion again here”




