
The Raft Consensus Algorithm

Diego Ongaro and John Ousterhout

Stanford University

● Consensus: get multiple servers to agree on state

● Solutions typically handle minority of servers failing

● == master-slave replication that can recover from

master failures safely and autonomously

● Used in building consistent storage systems

▪ Top-level system configuration

▪ Sometimes manages entire database state (e.g., Spanner)

● Examples: Chubby, ZooKeeper, Doozer

October 2013 Raft Consensus Algorithm Slide 2

What is Consensus?

● Consensus widely regarded as difficult

▪ Dominated by an algorithm called Paxos

● Raft designed to be easier to understand

▪ User study showed students learn Raft better

● 25+ implementations of Raft in progress on GitHub

▪ See http://raftconsensus.github.io

▪ Bloom, C#, C++, Clojure, Elixir, Erlang, F#, Go, Haskell, Java,

Javascript, OCaml, Python, Ruby

October 2013 Raft Consensus Algorithm Slide 3

Raft: making consensus easier

October 2013 Raft Consensus Algorithm Slide 4

Single Server

Clients

z6

Server

Hash Table

x 1

y 2

z 6

October 2013 Raft Consensus Algorithm Slide 5

Single Server

Clients

z6

Server

State Machine

October 2013 Raft Consensus Algorithm Slide 6

Single Server

Clients

z6

Log

State
Machine

Server

x3 y2 x1 z6

● Replicated log replicated state machine

▪ All servers execute same commands in same order

● Consensus module ensures proper log replication

● System makes progress as long as any majority of servers are up

● Failure model: fail-stop (not Byzantine), delayed/lost messages

October 2013 Raft Consensus Algorithm Slide 7

Goal: Replicated Log

x3 y2 x1 z6

Log

Consensus
Module

State
Machine

Log

Consensus
Module

State
Machine

Log

Consensus
Module

State
Machine

Servers

Clients

x3 y2 x1 z6 x3 y2 x1 z6

z6

Two general approaches to consensus:

● Symmetric, leader-less:

▪ All servers have equal roles

▪ Clients can contact any server

● Asymmetric, leader-based:

▪ At any given time, one server is in charge, others accept its

decisions

▪ Clients communicate with the leader

● Raft uses a leader:

▪ Decomposes the problem (normal operation, leader changes)

▪ Simplifies normal operation (no conflicts)

▪ More efficient than leader-less approaches

October 2013 Raft Consensus Algorithm Slide 8

Approaches to Consensus

1. Leader election:

▪ Select one of the servers to act as leader

▪ Detect crashes, choose new leader

2. Normal operation (log replication)

▪ Leader takes commands from clients, appends them to its log

▪ Leader replicates its log to other servers (overwriting

inconsistencies)

3. Safety

▪ Need committed entries to survive across leader changes

▪ Define commitment rule, rig leader election

October 2013 Raft Consensus Algorithm Slide 9

Raft Overview

● At any given time, each server is either:

▪ Leader: handles all client interactions, log replication

● At most 1 viable leader at a time

▪ Follower: completely passive replica (issues no RPCs, responds

to incoming RPCs)

▪ Candidate: used to elect a new leader

October 2013 Raft Consensus Algorithm Slide 10

Server States

Follower Candidate Leader

start

timeout,
start election

receive votes from
majority of servers

● Time divided into terms:

▪ Election

▪ Normal operation under a single leader

● At most 1 leader per term

● Some terms have no leader (failed election)

● Each server maintains current term value

● Key role of terms: identify obsolete information

October 2013 Raft Consensus Algorithm Slide 11

Terms

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal OperationSplit Vote

● Servers start up as followers

● Followers expect to receive RPCs from leaders or

candidates

● If election timeout elapses with no RPCs:

▪ Follower assumes leader has crashed

▪ Follower starts new election

▪ Timeouts typically 100-500ms

● Leaders must send heartbeats to maintain authority

October 2013 Raft Consensus Algorithm Slide 12

Heartbeats and Timeouts

Upon election timeout:

● Increment current term

● Change to Candidate state

● Vote for self

● Send RequestVote RPCs to all other servers, wait

until either:

1. Receive votes from majority of servers:

● Become leader

● Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:

● Return to follower state

3. No-one wins election (election timeout elapses):

● Increment term, start new election
Slide 13

Election Basics

● Safety: allow at most one winner per term

▪ Each server gives out only one vote per term (persist on disk)

▪ Two different candidates can’t accumulate majorities in same

term

● Liveness: some candidate must eventually win

▪ Choose election timeouts randomly from, e.g., 100-200ms range

▪ One server usually times out and wins election before others

wake up

October 2013 Raft Consensus Algorithm Slide 14

Election Properties

Servers

Voted for

candidate A

B can’t also

get majority

● Log entry = index, term, command

● Log stored on stable storage (disk); survives crashes

October 2013 Raft Consensus Algorithm Slide 15

Log Structure

1
x3

1 2 3 4 5 6 7 8

3
z0

1
y2

1
x1

2
z6

3
y9

3
y1

3
x4

1
x3

3
z0

1
y2

1
x1

2
z6

1
x3

3
z0

1
y2

1
x1

2
z6

3
y9

3
y1

3
x4

1
x3

1
y2

1
x3

3
z0

1
y2

1
x1

2
z6

3
y9

3
y1

leader

log index

followers

committed entries

term

command

● Client sends command to leader

● Leader appends command to its log

● Leader sends AppendEntries RPCs to followers

● Once new entry safely committed:
▪ Leader applies command to its state machine, returns result to

client

● Catch up followers in background:
▪ Leader notifies followers of committed entries in subsequent

AppendEntries RPCs

▪ Followers apply committed commands to their state machines

● Performance is optimal in common case:
▪ One successful RPC to any majority of servers

October 2013 Raft Consensus Algorithm Slide 16

Normal Operation

High level of coherency between logs:

● If log entries on different servers have same index

and term:

▪ They store the same command

▪ The logs are identical in all preceding entries

● If a given entry is committed, all preceding entries

are also committed

October 2013 Raft Consensus Algorithm Slide 17

Log Consistency

1
x3

1 2 3 4 5 6

3
z0

1
y2

1
x1

2
z6

3
y9

4
x4

1
x3

3
z0

1
y2

1
x1

2
z6

● Each AppendEntries RPC contains index, term of

entry preceding new ones

● Follower must contain matching entry; otherwise it

rejects request

● Implements an induction step, ensures coherency

October 2013 Raft Consensus Algorithm Slide 18

AppendEntries Consistency Check

1
x3

3
z0

1
y2

1
x1

2
z6

1
x3

1
y2

1
x1

2
z6

leader

follower

1 2 3 4 5

1
x3

3
z0

1
y2

1
x1

2
z6

1
x3

1
y2

1
x1

1
x4

leader

follower

AppendEntries succeeds:

matching entry

AppendEntries fails:

mismatch

Leader changes can result in tmp. log inconsistencies:

October 2013 Raft Consensus Algorithm Slide 19

Log Inconsistencies

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12log index

leader for
term 8

1 41 1 4 5 5 6 6

1 41 1

1 41 1 4 5 5 6 6 6 6

1 41 1 4 5 5 6 6 6

1 41 1 4

1 1 1

possible
followers

4 4

7 7

2 2 33 3 3 32

(a)

(b)

(c)

(d)

(e)

(f)

Extraneous

Entries

Missing

Entries

Slide 20October 2013 Raft Consensus Algorithm

● Leader keeps nextIndex for each follower:

▪ Index of next log entry to send to that follower

● When AppendEntries consistency check fails, decrement

nextIndex and try again:

● When follower overwrites inconsistent entry, it deletes all

subsequent entries:

Repairing Follower Logs

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12log index

leader for term 7

1 41 1

1 1 1
followers

2 2 33 3 3 32

(a)

(b)

nextIndex

1 1 1follower (b) after 4

Any two committed entries at the same index must be

the same.

October 2013 Raft Consensus Algorithm Slide 21

Safety Requirement

Leader marks entry

committed

Restrictions on

commitment

Restrictions on

leader election

Entry present in every

future leaders’ log

● During elections, candidate must have most up-to-

date log among electing majority:

▪ Candidates include log info in RequestVote RPCs

(length of log & term of last log entry)

▪ Voting server denies vote if its log is more up-to-date:

October 2013 Raft Consensus Algorithm Slide 22

Picking Up-to-date Leader

1 21 1 2

1 2 3 4 5

1 21 1

Same last term but

different lengths:

more up-to-date

Different last terms:

1 1 1

2

1 2 3 4 5

1 1 1

5

● Case #1/2: Leader decides entry in current term is

committed

● Majority replication makes entry 3 safe:

October 2013 Raft Consensus Algorithm Slide 23

Committing Entry from Current Term

1 2 3 4 5 6

1 1

1 1

1 1

1 1

1 1

s1

s2

s3

s4

s5

2

2

2

2
AppendEntries just
succeeded

Can’t be elected as
leader for term 3

Leader for
term 2

Leader marks entry

committed
Entry present in every

future leaders’ log

● Case #2/2: Leader is trying to finish committing entry

from an earlier term

● Entry 3 not safely committed:

October 2013 Raft Consensus Algorithm Slide 24

Committing Entry from Earlier Term

1 2 3 4 5 6

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2
AppendEntries just
succeeded

3

4

3

Leader for
term 4

3

Could be elected as
leader for term 5!

Leader marks entry

committed
Entry present in every

future leaders’ log

● New leader may not mark

old entries committed until

it has committed an entry

from its current term.

● Once entry 4 committed:

▪ s5 cannot be elected leader

for term 5

▪ Entries 3 and 4 both safe

October 2013 Raft Consensus Algorithm Slide 25

New Commitment Rules

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

Leader for
term 4

4

4

Combination of election rules and

commitment rules makes Raft safe

3

1. Leader election

2. Normal operation

3. Safety

More at http://raftconsensus.github.io:

● Many more details in the paper

(membership changes, log compaction)

● Join the raft-dev mailing list

● Check out the 25+ implementations on GitHub

Diego Ongaro @ongardie
Slide 26

Raft Summary

http://raftconsensus.github.io/

