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● Consensus: get multiple servers to agree on state

● Solutions typically handle minority of servers failing

● == master-slave replication that can recover from 

master failures safely and autonomously

● Used in building consistent storage systems

▪ Top-level system configuration

▪ Sometimes manages entire database state (e.g., Spanner)

● Examples: Chubby, ZooKeeper, Doozer
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What is Consensus?



● Consensus widely regarded as difficult

▪ Dominated by an algorithm called Paxos

● Raft designed to be easier to understand

▪ User study showed students learn Raft better

● 25+ implementations of Raft in progress on GitHub

▪ See http://raftconsensus.github.io

▪ Bloom, C#, C++, Clojure, Elixir, Erlang, F#, Go, Haskell, Java, 

Javascript, OCaml, Python, Ruby
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Raft: making consensus easier
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● Replicated log  replicated state machine

▪ All servers execute same commands in same order

● Consensus module ensures proper log replication

● System makes progress as long as any majority of servers are up

● Failure model: fail-stop (not Byzantine), delayed/lost messages
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Goal: Replicated Log
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Two general approaches to consensus:

● Symmetric, leader-less:

▪ All servers have equal roles

▪ Clients can contact any server

● Asymmetric, leader-based:

▪ At any given time, one server is in charge, others accept its 

decisions

▪ Clients communicate with the leader

● Raft uses a leader:

▪ Decomposes the problem (normal operation, leader changes)

▪ Simplifies normal operation (no conflicts)

▪ More efficient than leader-less approaches
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Approaches to Consensus



1. Leader election:

▪ Select one of the servers to act as leader

▪ Detect crashes, choose new leader

2. Normal operation (log replication)

▪ Leader takes commands from clients, appends them to its log

▪ Leader replicates its log to other servers (overwriting 

inconsistencies)

3. Safety

▪ Need committed entries to survive across leader changes

▪ Define commitment rule, rig leader election
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Raft Overview



● At any given time, each server is either:

▪ Leader: handles all client interactions, log replication

● At most 1 viable leader at a time

▪ Follower: completely passive replica (issues no RPCs, responds 

to incoming RPCs)

▪ Candidate: used to elect a new leader
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● Time divided into terms:

▪ Election

▪ Normal operation under a single leader

● At most 1 leader per term

● Some terms have no leader (failed election)

● Each server maintains current term value

● Key role of terms: identify obsolete information
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● Servers start up as followers

● Followers expect to receive RPCs from leaders or 

candidates

● If election timeout elapses with no RPCs:

▪ Follower assumes leader has crashed

▪ Follower starts new election

▪ Timeouts typically 100-500ms

● Leaders must send heartbeats to maintain authority
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Heartbeats and Timeouts



Upon election timeout:

● Increment current term

● Change to Candidate state

● Vote for self

● Send RequestVote RPCs to all other servers, wait 

until either:

1. Receive votes from majority of servers:

● Become leader

● Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:

● Return to follower state

3. No-one wins election (election timeout elapses):

● Increment term, start new election
Slide 13

Election Basics



● Safety:  allow at most one winner per term

▪ Each server gives out only one vote per term (persist on disk)

▪ Two different candidates can’t accumulate majorities in same 

term

● Liveness: some candidate must eventually win

▪ Choose election timeouts randomly from, e.g., 100-200ms range

▪ One server usually times out and wins election before others 

wake up
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● Log entry = index, term, command

● Log stored on stable storage (disk); survives crashes
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Log Structure
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● Client sends command to leader

● Leader appends command to its log

● Leader sends AppendEntries RPCs to followers

● Once new entry safely committed:
▪ Leader applies command to its state machine, returns result to 

client

● Catch up followers in background:
▪ Leader notifies followers of committed entries in subsequent 

AppendEntries RPCs

▪ Followers apply committed commands to their state machines

● Performance is optimal in common case:
▪ One successful RPC to any majority of servers
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Normal Operation



High level of coherency between logs:

● If log entries on different servers have same index 

and term:

▪ They store the same command

▪ The logs are identical in all preceding entries

● If a given entry is committed, all preceding entries 

are also committed
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Log Consistency
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● Each AppendEntries RPC contains index, term of 

entry preceding new ones

● Follower must contain matching entry;  otherwise it 

rejects request

● Implements an induction step, ensures coherency
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AppendEntries Consistency Check
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Leader changes can result in tmp. log inconsistencies:
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Log Inconsistencies
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● Leader keeps nextIndex for each follower:

▪ Index of next log entry to send to that follower

● When AppendEntries consistency check fails, decrement 

nextIndex and try again:

● When follower overwrites inconsistent entry, it deletes all 

subsequent entries:

Repairing Follower Logs
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Any two committed entries at the same index must be 

the same.
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Safety Requirement
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● During elections, candidate must have most up-to-

date log among electing majority:

▪ Candidates include log info in RequestVote RPCs

(length of log & term of last log entry)

▪ Voting server denies vote if its log is more up-to-date:
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Picking Up-to-date Leader
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● Case #1/2: Leader decides entry in current term is 

committed

● Majority replication makes entry 3 safe:
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Committing Entry from Current Term
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● Case #2/2: Leader is trying to finish committing entry 

from an earlier term

● Entry 3 not safely committed:
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Committing Entry from Earlier Term
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● New leader may not mark 

old entries committed until 

it has committed an entry 

from its current term.

● Once entry 4 committed:

▪ s5 cannot be elected leader 

for term 5

▪ Entries 3 and 4 both safe

October 2013 Raft Consensus Algorithm Slide 25

New Commitment Rules
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1. Leader election

2. Normal operation

3. Safety

More at http://raftconsensus.github.io:

● Many more details in the paper

(membership changes, log compaction)

● Join the raft-dev mailing list

● Check out the 25+ implementations on GitHub

Diego Ongaro  @ongardie
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Raft Summary

http://raftconsensus.github.io/

